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Abstract

Vision-based scene understanding tasks in the robotics domain have the unique setting of
needing to process data in real-time whilst achieving high reliability and safety. In this
thesis, we tackle these two important challenges of improving the efficiency and safety of
deep neural networks. We propose an efficient encoder-decoder architecture that utilizes
light-weight building blocks, skip connections, and efficient scaling. We benchmark our
results on the CamVid dataset and achieve competitive results compared to state-of-the-art,
with a lite network scoring 66.4 mIOU on the test set with only 0.56M parameters, and a
large scoring 73.9 mIOU with 10.52M parameters. We then configure the network into a
Bayesian neural network using MC Dropout and show that the uncertainties obtained using
Bayesian inference achieves almost perfect uncertainty calibration with up to 0.17 ECE. We
further demonstrate a novel method of performing Bayesian inference using stochastic depth.
When compared to dropout methods, stochastic depth obtains higher mIOU scores as well as
lower ECE of 2.14 using deterministic test-time inference.
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Introduction

1.1 Deep Learning for Robotics

Over the last decade, there has been a surge of interest in using neural networks in almost
all aspects of robotics systems, such as robot vision, robot manipulation, and autonomous
navigation. However, the high expressiveness of neural networks typically comes at the cost
of increased computational requirements. The lack of efficiency of neural networks often
becomes the bottleneck in the implementation process. In addition, modern neural networks
present critical issues, whereby they are often “confidently wrong”. The overconfidence
phenomenon makes it difficult to implement neural networks in safety-critical applications,
where the interpretability of the network’s predictions is vital for users. In short, deep
learning tasks in robotics face two open-ended critical issues: efficiency and safety.

This thesis is an attempt to address these two issues in a two-fold process. First, we extend
recent advances in efficient convolutional neural networks to the encoder-decoder architecture
and present an efficient and scalable architecture. Secondly, we leverage techniques in
Bayesian Deep Learning (BDL) to turn our efficient network architecture into a Bayesian
Neural Network (BNN). These networks are able to produce uncertainties along with the
prediction, as shown in Figure 1.1, and we will show that such networks are able to achieve

improved uncertainty calibration.

Input Prediction Uncertainty

Figure 1.1 A Bayesian neural network outputs calibrated, per-pixel uncertainties along with predictions
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1.1.1 Efficient Networks

Robots interact with the world in real-time, and are often required to react to or respond to
rapid changes to their environment. Consider an autonomous mobile robot that relies on a
deep convolutional neural network for its navigation system. A slow inference response from
the neural network will mean that fast-moving obstacles will be detected with a delay, or not
detected at all. Such failure mode can potentially harm the users or the system itself and
incur high costs.

In addition, robotic mobile systems cannot carry expensive and powerful computational
resources with them due to weight, power, and cost constraints. This setting is unlike other
safety-critical tasks such as medical imaging, where the computational resources are usually
stationary or remote. The constraint on resources further enforces the requirement for these
systems to be efficient, whereby they should use a minimal amount of computation to achieve
the best performance. Such limitation in resources is particularly prevalent in computer
vision tasks such as scene understanding, where objects in the scene need to be segmented
on a per-pixel basis so that the control system can make appropriate responses.

Modern neural networks, on the other hand, have leveraged advances in GPU hardware
to achieve better performance by becoming larger and deeper. ResNet, the state-of-the-art
image recognition CNN, is known for gaining increased expressiveness via depth [27]. Many
image segmentation networks, such as DeepLab, use ResNet101 as the backbone encoder,
which itself already uses 60M parameters [12]. The large network size and high FLOP count
mean that these segmentation methods often cannot be run in real-time on most GPUs on
mobile robots, let alone CPUs. Furthermore, recent advances in vision transformers require
even more parameters with upwards of 100M or more [14].

This trend in using deeper and larger networks to obtain higher performance means that
there is a lack of easy and accessible tools for robotics practitioners to build segmentation
networks to their needs. Different robotic devices have different computational constraints
depending on the hardware, and it makes sense to utilize the largest feasible network with
the highest performance given the computational constraints. Thus, this thesis fills the
research gap by presenting a simple and elegant solution to network scaling for encoder-
decoder architectures. We will further show that the proposed network is able to retain a high

performance-to-parameter ratio at varying sizes, whilst running comfortably in real-time.
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1.1.2 Sources of Uncertainty

In the following, we discuss three sources of uncertainties that are present in most prediction
problems: a) uncertainty due to the precision of the measuring system, b) errors in the learned
model, and c) high variability of real-world scenarios.

Most real-world inputs have an irreducible degree of uncertainty due to the limited
precision of the measuring device. For example, a radar sensor will have uncertainties and
variability in the distance measured. A camera is limited by its sensor resolution and quality,
and may not always be able to capture the full range of colours in all lighting conditions.
It is also limited by its shutter speed, which can blur objects when either the camera or
other objects are non-stationary. These uncertainties are often also defined as a type of
aleatoric uncertainty, that is uncertainty regarding the data itself. This type of uncertainty is
irreducible, regardless of the learning system and how much training data is present.

Uncertainties in the learned model can manifest in two ways: errors in the model structure
itself, and uncertainties during the learning process. The model structure represents a prior
belief on what the designer of the algorithm believes is a good learning model for the
problem at hand. For instance, one may choose a fixed set of polynomial features for a
linear regression problem, which constrains the expressiveness of the algorithm but also
avoids overfitting the data too much. In the context of neural networks, one may choose
to process image data with convolutional layers rather than fully connected layers, as the
former retains the spatial structure of data better than the latter. However, there is always a
degree of uncertainty with the structure of the model itself, and it’s very unlikely for one to
choose the "correct" model architecture from the start. Uncertainties can also arise during
the learning process. Neural networks are trained with stochastic gradients with random
initialization, which means that they usually converge to a slightly different local minimum
in every experiment. Both of these uncertainties are defined as epistemic uncertainties, that
is uncertainty regarding the model itself.

Finally, real-world data is highly dynamic and its behaviour can be hard to predict with
limited data. For instance, the same road scene will look very different on a sunny day
compared to a rainy and foggy day. The same tree will appear differently over different
seasons, and road signs may be removed or added throughout the year. These changes
represent a domain shift or distribution shift when the real-world data is different to the
training set data. Neural networks are typically sensitive to these changes and their output
qualities can drastically vary as a result. This type of uncertainty is also epistemic uncertainty,
because it is uncertainty regarding the knowledge of the network, and can be reduced
with more training data. See Figure 1.2 for example outputs of aleatoric and epistemic

uncertainties.
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Prediction Aleatoric Uncertainty Epistemic Uncertainty

Figure 1.2 Aleatoric and epistemic uncertainties predicted by a Bayesian neural network. Note that
aleatoric uncertainty tends to be higher along edges and boundaries of objects, where uncertainty
arises from finite pixel resolution. On the other hand, epistemic uncertainty tends to be higher within
objects, and is concerned with the classification of the object itself.

1.1.3 Uncertainty Calibration

A reliable algorithm should be able to take into account the aforementioned sources or
uncertainty, and “knows what it knows”. In fact, the argument is often made that all intelligent
agents should be Bayesian, one which is “aware” of the presence of uncertainties [4].
However, modern neural networks exhibit several critical issues that make it difficult to
implement them in safety-critical applications. Firstly, they provide unreliable uncertainty
estimates with frequent overconfident predictions, which means that they are unable to
convey a calibrated confidence that represents the true probability of their predictions being
correct [22]. Secondly, they are vulnerable to adversarial attacks, where small adversarial
changes can be made to the input to result in drastically different outputs [43]. Lastly, they
are unable to distinguish between in-domain and out-of-domain samples, which means that
they are not aware when the input space has shifted to a domain that they have not been
trained on [57].

These critical issues are present because there are always inherent uncertainties involved
in the prediction process of learning algorithms, and networks that cannot predict these
uncertainties correctly will inevitably face these drawbacks. On the other hand, if these
uncertainties can be predicted beforehand, autonomous systems can then be programmed to
perform safer actions by moving slower, or pausing and waiting for human intervention [16].
Note that, unlike supervised learning, there is no "ground truth uncertainty", instead we
seek networks to have the desired property of producing calibrated uncertainties, where the
confidence score is equal to the probability that the prediction is correct. I.e. 80% of the time

when the network is 80% confident, it should produce the correct results. Mukhoti and Gal
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[52] further defines two desired characteristics that follow this idea: 1) networks should be
correct when it’s confident, and 2) not confident when it’s incorrect. We later define metrics
that measure the qualities of uncertainties based on these principles in Section 3.3.
Bayesian Deep Learning (BDL) is an emerging field of research that aims to incorpo-
rate Bayesian reasoning into neural networks [19]. BDL has become a vital component
in fields such as active learning [18], reinforcement learning [45], and semi-supervised
learning [79]. BDL methods generally try to sample a set of neural network weights that
approximate the posterior distribution, thereby making predictions that are aware of both
epistemic and aleatoric uncertainty. A comprehensive review of BDL methods is covered
in Section 2.2.2. This thesis utilizes relatively light-weight BDL methods [16] that have
shown promising results with better calibrated uncertainties [52] and sometimes improved

predictive properties [38].

1.2 Aims and Objectives

The aims and objectives of this thesis are as follows:

1. Modify the encoder-decoder architecture with efficient building blocks on both the
encoder and the decoder to improve the network efficiency

2. By experimenting with network architectural designs, propose efficient methods of
scaling the network to obtain a performance-to-parameter ratio that is on par with

state-of-the-art methods

3. Modify the encoder-decoder networks into Bayesian neural networks using MC
Dropout and show that these networks obtain desired qualities such as improved
uncertainty calibration and higher predictive performance

4. Propose a novel Bayesian approximation method using stochastic depth and show
with empirical evidence that such networks possess similar or improved properties as

dropout-based methods

The rest of the thesis is organised as follows. In Chapter 2 we present the literature review
on the two main components of this thesis: efficient convolutional neural network design and
Bayesian deep learning. We place particular emphasis on methods that are closely related
to techniques used in this thesis. In Chapter 3 we discuss the methodology of the thesis.
In particular, we present results from preliminary experiments for designing the decoder,

and we cover the relevant mathematical details for the Bayesian techniques that we use. In
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Chapter 4 we show the qualitative and quantitative results from two sets of experiments. The
first set of experiments attempts to remove blocks from networks in the most efficient way to
preserve as much performance as possible. The second set of experiments explores Bayesian
approximation using MC Dropout and stochastic depth and evaluates the corresponding
uncertainty quality. Finally, in Chapter 5 we conclude the thesis and point to directions for
future work.



Literature Review

This section covers the literature on the two topics that are central to this thesis: Deep
Learning for Computer Vision, and Bayesian Deep Learning. For both topics, we cover a
holistic view of recent literature, with a higher emphasis on works that are most relevant to
this thesis.

In Section 2.1.1 we discuss the basic building blocks of modern convolutional nets and
particularly focus on skip connections and attention mechanisms. We then examine recent
techniques to reduce the computational costs of CNNs in Section 2.1.2, with emphasis on
depthwise convolutional blocks and inverted residual blocks. We conclude the section with
notable recent advances in image segmentation, such as the encoder-decoder architecture,
atrous convolution based methods, and multi-branch methods in Section 2.1.3.

In the second part of this literature review, we first introduce the Bayesian learning
framework in Section 2.2.1. This is followed by a review of common Bayesian deep learning
methods in Section 2.2.2, including variational inference, Laplace approximation, and
sampling methods. Finally, we focus in particular on Bayesian approximations techniques

central to this thesis in Section 2.2.3, namely dropout-based methods.

2.1 Deep Learning for Computer Vision

This section provides a literature overview of deep computer vision, beginning with some
common building blocks and techniques. In the context of scene-understanding tasks in
robotics, it’s important for networks to be efficient in operating in real-time. Thus, we place
particular emphasis on efficient convolutional neural networks. We conclude with a summary
of semantic segmentation frameworks, which can often be incorporated with efficient CNNs

as encoders to produce efficient segmentation networks.
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2.1.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) as deep neural networks built with convolution blocks.
A basic convolution block uses a k X k X c;—1 X ¢; kernel that performs the convolution
operation over the input. This operation is applied over ¢;_1 input channels and outputs c;
channels. The stride of the convolution s impacts the resolution of the output feature map. For
instance, s = 1 would keep the resolution the same, and s = 2 would downscale the resolution
by half. The padding p of the convolution usually serves as an implementation detail to
keep output dimensions consistent with input dimensions. Most CNNs adopt the strategy of
decreasing the spatial dimension using convolutions or pooling modules with stride s > 1,
whilst widening the channel depth. The intuition is that smaller feature dimensions increase

the perceptive field of the networks and help with the extraction of long-distance features.

Early Architectures

The earliest CNN dates back to the 1990s when they were used to perform tasks such
classifying handwritten digits. One of the earliest prominent CNN architecture is LeNet [42],
built with a series of convolutional blocks and pooling layers to downsample the image,
and fully connected layers as the predictor. Subsequently, AlexNet [40] was proposed as a
prominent early-day CNN architecture that achieved significantly improved classification
results with a deeper network architecture. Googl.eNet was proposed by Szegedy et al. [66]
with a novel inception block that combines multi-scale convolutional transformations with
filters of different scales.

Residual Connections

The Residual Network (ResNet) architecture [27] was designed to address the challenges of
training and optimizing very deep neural networks, which often face issues such as vanishing
or exploding gradients [3]. The central idea of the network is to learn residual functions using
skip connections, or shortcut connections between layers, that enable the direct propagation

of information through many layers. Formally, a skip connection block is described as
y=F(x,{W;})+x (2.1)

where x and y represent the input and output vectors of the layer, such that the network
only needs to learn F(x) := #(x) — x for a given underlying target mapping #(x). ResNet
alleviated the difficulties of training deep networks by allowing gradients to flow unimpeded,

leading to both faster convergence and better performance.
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Dense Connections

Dense Convolutional Networks (DenseNet) [33] further increase connectivity between layers
by connecting every layer with every preceding layer. The features are densely connected via
concatenation, further alleviating the vanishing gradient problem and encouraging feature

reuse. Concretely, every /th layer receives feature outputs from all preceding ¢ — 1 layers:

Yo = F([X0,X1,..., X1}, {W¢}) (2.2)

Where [x,X,...,Xy_1] refers to concatenation of the feature vectors. In addition, the
authors highlight a connection between DenseNet and stochastic depth regularization [34].
Stochastic depth also allows for every layer to be connected to every proceeding layer but in

a probabilistic fashion.

Squeeze and Excitation

The Squeeze-and-Excitation (SE) block is a way to adaptively recalibrate channel-wise
feature responses [32]. The structure of the SE block involves first a squeeze operation
that aggregates feature maps across spatial dimensions. This is often performed using max-
pooling or average-pooling layers. Secondly, the excitation operation is performed on this
aggregated feature map, which is a self-gating mechanism with a sigmoid activation function.

Formally, the gating mechanism is performed as:
s = o(W; x ReLU(W;z)) (2.3)

Where z is the output of the squeeze operation, and the dimensions of the parameters
W, € R? *C W, e RC* S are determined by a reduction ratio r. The recalibrated vector s is
then multiplied channel-wise with the input feature map. The SE block can be easily inserted
into any modern-day neural network with a small amount of computational overhead and has
been shown to improve performance on multiple visual tasks. Additionally, similar blocks
using attention mechanisms have been adopted in many segmentation frameworks for fusing
features [29, 78].
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Figure 2.1 Comparison of the parameters of standard convolution and depthwise separable convolu-
tions. Standard convolution (a) uses k X k X ¢;—1 X ¢; parameters. Depthwise-separable convolutions
which uses k X k X ¢;_; parameters in the depthwise filtering stage (b) and c¢;_; X ¢; parameters in the
pointwise convolution step (c).

2.1.2 Efficient CNNs

Deeper and larger convolutional neural networks have shown to be extremely good feature
extractors on difficult vision datasets, but they also require enormous amounts of resources
to train and are usually not practically usable in mobile applications such as robotics. In
many computer vision tasks in robotics, it is often the case that inference needs to be run in
real-time on a mobile device with limited computational power and low memory costs. This
puts constraints on the number of parameters and inference time of deep neural networks.
Therefore, the search for more efficient CNN architectures with fewer parameters to achieve
similar performance has become an active field of research in the past few years [28].
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Depthwise Separable Convolutions

Howard et al. [31] introduced depthwise separable convolution blocks to build an efficient
convolutional neural network called MobileNet. Depthwise separable convolution is a
factorised version of convolution layers that reduces the number of operations from a standard
convolution. Consider a standard convolution layer with kernel size k x k requiring k X k x
ci—1 X c¢; parameters, where c¢;_1 and c¢; are the number of output channels for the previous and
current layer respectively (see Figure 2.1a). For an output dimension 4 X w, the convolution

operation has a computational cost of:

hxwxci_1Xcixkxk

The authors observed that such an operation involves two steps conceptually. The first
step uses convolutional k x k kernels to combine filter features, and the second step combines
these features into new representations with ¢; channels. As such, one can split these
two steps into two separate operations known as the depthwise separable convolution. In
the first step, shown in Figure 2.1b, a depthwise separable convolutional filter applies a
single k x k filter per input channel, with k X k X ¢;—1 parameters and computational cost of
hxwxci_] xkxk!.

The depthwise convolutional filter outputs a & X w X ¢;_1 feature which is then passed
into the pointwise convolution to create new features. The pointwise convolution operation
is essentially a linear transformation with ¢;_| X ¢; parameters, with computational cost
of h X w X ¢j—1 X ¢;, which finally outputs the & X w X ¢; feature with the same dimension
as a standard convolution (see Figure 2.1c). The total operational cost of the depthwise

convolution and pointwise convolution is:
hxwxci—1 X (ci+kxk)

Comparing this to the standard convolution, we have a reduction factor of cl, + ﬁ For most
convolutional filters, we have ¢; > k2, then depthwise separable convolutions represent a
reduction factor of around 1/k%. This would be around a 9-fold reduction for a kernel size of
3. A similar reduction factor also holds for the parameter count.

Howard et al. [31] also introduces a width multiplier to uniformly vary the output feature
channels for every layer in the network, as well as a resolution multiplier for the input image.
The former reduces both the memory and computational costs, whilst the latter reduces the

computational costs only.

'We assume that the spatial dimensions of input and output features are the same to make notation simpler.
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Inverted Residuals

MobileNetV2 [61] extends the mobile performance of MobileNet by introducing inverted
residuals with linear bottlenecks. This module is motivated by the conjecture that manifolds
of interest in neural networks can be embedded in low-dimensional subspaces. Consider
a convolutional layer with an output tensor of shape h; X w; X ¢;, it is believed that the
information encoded by this tensor can be encoded into a lower dimensional manifold, which
in turn can be embedded into a lower-dimensional subspace.

In general, for a layer transformation ReLU(Bx) with non-zero volume S, the points
mapped to interior S are obtained via the linear transformation B and unaffected by ReLU.
This observation, coupled with the fact that manifolds of interest lie in lower dimensions,
suggests that although ReLU collapses information in individual channels, information can
still be completely preserved in other channels. This intuition suggests that bottleneck
blocks used in common network architectures such as ResNet [27] contain all the necessary
information, and thus the authors apply skip connections directly between these bottlenecks.
Such inverted bottleneck design has shown to be much more memory efficient and recovers
some of the regularizing power of depth-wise separable blocks.

The specific building blocks of the bottleneck residual block are as follows, first a
pointwise convolution filter is applied to increase the channels from c;_; to tc;—1, where t is
the expansion factor usually set to 6. This is then followed by a ReLU activation layer with a
depthwise 3 x 3 filter followed by ReLU. Lastly, another pointwise convolution filter takes
the channel number from zc¢;_; to tc;. The skip connection is made between the input and the

output. The computational cost of the operation is
hXxwXci_1 Xt X (Cifl +k2—|—c,-)

Note that although this seems more expensive compared to depthwise separable convolutions,
with an extra c¢;_1, the increased expressiveness of the block means that the channel number
is significantly reduced in the final network design. In addition, the authors highlight that
the inverted bottleneck residual design has memory-efficient inference with the amount of

memory dominated by the size of bottleneck tensors.
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Network Scaling

He et al. [27] also vary the depth of the ResNet network to increase its expressiveness, and
observed that deeper networks are capable of capturing more complex features. In [31, 61],
the authors explored changing the input resolutions and the network width to trade-off
accuracy with network size and complexity. The network width is increased by increasing the
channel outputs of convolutional layers. Increasing network width tends to lead to networks
that are more capable of capturing fine-grained features and that are easier to train. Similarly,
increasing the input image resolution allows networks to capture more fine-grained features.

Tan and Le [68] proposed a unified framework of scaling networks by a constant com-
pound ratio across resolution, depth, and width. The authors utilize neural architectural
search to find a good baseline network architecture called EfficientNetB0, and observe better
network scaling when all three dimensions are increased by a proportion. Such proportions
are obtained via a small grid search. The baseline network architecture utilizes inverted resid-
ual bottleneck blocks with an additional squeeze and excitation block after the depth-wise
filter, an attention mechanism that comes with slight computational overhead but performs
feature recalibration. Furthermore, the authors utilize the swish activation function to increase

network expressiveness, and stochastic depth in the network as a regularizer.

Neural architecture search

Another popular and more principled approach to finding efficient architectures is to utilize
neural architecture search (NAS). NAS approaches commonly fix a set of building blocks
with a few tunable parameters (e.g. width, depth) and seek to find a microarchitecture
that optimises some objective by combining the building blocks. Tan et al. [67] utilises a
neural architecture search approach with a multi-objective reward function that optimises
the trade-off between network performance and inference time on CPU. A reinforcement
learning agent with a recurrent neural network is used as the controller for sampling models
and maximizing the expected reward using proximal policy optimization [62]. The resultant
network, MNasNet, has around 2M parameters and combines inverted bottleneck blocks with
kernel size 3 and 5, with squeeze and excitation blocks inserted within the block.

Howard et al. [30] uses a similar hardware-aware neural architecture search to produce
MobileNetV3. The authors use a similar automated search algorithm to find an efficient neural
network architecture tuned for mobile CPUs and minimize latency. Tan and Le [69] further
uses NAS to find a training-aware network that minimizes the training time of the network.
Interestingly, the authors observe that some of the depth-wise convolution blocks can be

"fused" back into the standard convolution blocks to retrieve expressiveness. Importantly,
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such modifications are only made in the shallow parts of the network where the number of
parameters is much lower. The authors also propose a stage-wise regularization schedule
inspired by curriculum training [2], and adaptively increases the degree of regularization

during training.

Other works

There have been various other methods of reducing the computational cost of CNNs over
the years. Jaderberg et al. [36] proposes low-rank variations of the convolution layer by
using 1 X k and k x 1 convolutions. Group convolution was introduced by [40] where output
channels only receive information from input channels of the same group. Although this limits
the field of view of the output channel to a specific subset of input channels. ShuffleNet [80]
addresses this issue by utilising pointwise group convolution and channel shuffling to reduce
the computation cost of the network. In SqueezeNet [35], the authors utilize the fire module
which is comprised of the squeeze operation, using 1 x 1 filters followed by the expansion
operation, using both 1 x 1 and 3 x 3 filters. The authors further prune the network using
techniques such as deep compression [25] to reduce the network size for inference use.

2.1.3 Image Segmentation

The task of image segmentation was an extension of successes from early works on image
classification [40, 66]. The goal of image segmentation is to produce per-pixel classifications
of the input image and produce a fine-grained prediction output. In the following, we discuss
prominent segmentation methods, such as FCN, Encoder-Decoder architectures, atrous

convolutions, and multi-branch methods.

Fully Convolutional Network

Long et al. [44] was the first to propose the idea that fully connected layers can be completely
removed from deep CNNss in the context of image segmentation. Traditional CNNs output a
final vector prediction for classification via a series of downsampling or strided convolutions
that continually coarsens the features in the spatial dimension. The authors showed that
coarse, structural information retained by intermediate convolutional layers can be extracted
and upsampled back. Such upsampling tasks can be performed using bilinear upsampling or
deconvolution layers, retrieving per-pixel semantic classification. The resultant architecture,
termed fully convolutional networks (FCN), can be trained end-to-end with relatively high
performance and efficiency. Another benefit of such architecture is that pre-trained convolu-
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Skip connections

Figure 2.2 The FCN architecture upsamples intermediate features from standard convolutional neural
networks using deconvolution layers and combines features via residual connections.

tional neural networks can be utilized via transfer learning, and the network only needs to

learn the upsampling modules.

Encoder-Decoder Architecture

Following the work of FCN, several architectures emerged that involved a downsampling
part (encoder) of the network with an upsampling part (decoder). DeconvNet [56] includes a
deeper decoding network with several convolution filters at each spatial dimension and utilizes
deconvolution layers to upsample the features. Bilinski and Prisacariu [5] explored dense
decoder shortcuts, where in addition to the skip connections between encoder and decoder,
skip connections are also added in the decoder to form a densely connected decoder that fuses
features at different scales. UNet [59] was first proposed as an image segmentation network
for medical image segmentation, but its simple and effective architecture has also shown
promising results in a wide range of other domains [1, 77]. UNet uses a symmetrical encoder
and decoder architecture, where the encoder gradually decreases spatial dimensions and
increases feature dimensions, and the decoder performs the operations in reverse. Importantly,
UNet utilizes skip connections between the encoder and decoder via concatenation of the
features, this is shown in Figure 2.3. The idea is that such skip connections allow the transfer
of denser features from the encoder to the decoder and accelerate learning. Jégou et al. [37]
extends the u-shape architecture but using densely connected blocks from DenseNet [33],
with similar skip connections between the encoder and the decoder.

SegNet [1] is another prominent encoder-decoder architecture that utilizes pooling indices
from the encoder in the decoder. This operation is extremely lightweight and requires very
little memory, but is still able to transfer some long-distance information from the encoder to

the decoder. On the other hand, the authors also showed that retaining the complete feature
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Figure 2.3 The UNet architecture uses a symmetrical encoder and decoder, with skip connections to
transfer features from intermediate layers in the encoder to corresponding layers in the decoder.

from the encoder yields higher performance, but at the cost of lower inference time. Later
works have also developed Bayesian variations of the network using dropout to perform
Bayesian inference [38].

Atrous Convolutions

More recently, atrous convolutions (or dilated convolutions) have shown to be an effective
way of performing image segmentation in a series of works on the DeepLab architectures [11-
13]. Atrous convolutions have a higher field of view compared to regular convolutions but
with the same parameterisation, this is achieved via "holes" in the input field. By utilizing
atrous convolutions, a higher field of view can be achieved without reducing the spatial
dimension of the feature space, thereby rendering the decoding operation easier. In [11],
authors combined atrous convolution with atrous spatial pyramid pooling (ASPP) to combine
multi-scale features. The coarse output is then bilinearly upsampled and refined using a
condition random field (CRF). In [12], the authors compute atrous pooling at different scales
but in parallel, with an additional global image-level feature. Such architecture was able to
produce high-quality results even without CRF post-processing. Finally, in [13], the authors
utilize a decoder module to refine the coarse predictions, reporting improved results from
previous DeepLab versions.
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Multi-branch Methods

A downside of atrous convolution based approaches is that intermediate features have to
be very large to retain both spatial resolution and contextual information. In general, there
always exists a tension in segmentation networks between preserving spatial information and
obtaining contextual information. Yu et al. [78] proposes a bilateral segmentation network
(BiSeNet) to alleviate this tension with two separate paths for extracting spatial features and
contextual information separately. The authors also propose fusion blocks to combine the
features using attention mechanisms. This method of performing segmentation is extremely
efficient and fast, and there’s an active field of research in using these multi-branch models

to perform real-time segmentation [29].

Other Approaches

For completion, we also briefly mention that image transformers [14] have recently shown
to be a very promising direction for image segmentation. There are works that attempt to
make transformers more efficient [73], as well as ways of computing Bayesian inference with
transformers [53]. However, this thesis only focuses on well-established encoder-decoder
architecture that has also shown to be compatible with Bayesian approximation methods
such as MC Dropout.
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2.2 Bayesian Reasoning

For autonomous robotic agents, it is crucial for the algorithm be capable of providing reliable
uncertainty estimates [4]. The field of Bayesian learning seeks to capture the uncertainty of
learning systems. In particular, Bayesian Deep Learning (BDL) seeks to perform Bayesian
learning in deep neural networks. This section begins with a brief introduction to Bayesian
inference, followed by existing literature on BDL methods.

2.2.1 Bayesian Inference

Consider a dataset D = {x,-,y,-}f.\’: ;- In Bayesian learning, we assume a generative model
of the data p(D|0), coupled with a prior belief on the model parameters p(6), and infer a
posterior distribution p(6|D) from the data D. The posterior can be computed using the
Bayes Theorem [6]:

p(D|6)p(6)

p(D)

Where p(D) is the model evidence computed as the integral [ p(D|0)p(6)d6. The term
p(D|0), represents the likelihood that the observed data D is generated by the underlying

p(6|D) = 2.4)

model parameterized by 6. This likelihood is typically the objective function of the learning
problem, such as the cross-entropy loss, which measures the log-likelihood.

The predictive distribution on a new test point x*, y* is computed as

POl D) = [ P71, 0)p(68]D)d8 23)

However, the posterior described in Equation 2.4 is intractable for complex models such as
neural networks, which effectively renders the predictive distribution p(y*|x*, D) intractable
in Equation 2.5. As such, BDL methods try to estimate the posterior using approximate
bayesian inference techniques such as variational inference, Laplace approximation, and

sampling approaches, which we will discuss next.
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2.2.2 Bayesian Deep Learning

Variational Inference

Variational inference (VI) methods approximate the posterior p(0|X,y) with a simpler and
tractable parameterised distribution ¢(0). The idea of VI is to find variational distribution
q(0) that minimizes the Kullback-Leibler divergence between the variational distribution
and the true posterior:

Kl =5 e

However, the KL divergence cannot be optimized directly. Instead, the evidence lower bound,
also known as the free energy, is optimized. One can show that maximizing the ELBO

objective effectively minimizes the KL divergence.

M} (2.6)

P(
ELBO=E, |lo
[ &7 4(0)

ELBO can be optimized using a mini-batch of data using stochastic variational inference with
Gaussian priors [20]. Blundell et al. [7] further introduced Bayes By Backprop, optimizing
the free energy in Equation 2.6 directly using stochastic minibatch gradients and backpropa-
gation. Kingma et al. [39] further extended the method using the local reparameterization
trick, which has empirically shown to reduce the variance of the gradients in most cases.
Lastly, Gal and Ghahramani [16] showed stochastic regularization methods to deep neural
networks can be used for approximate Bayesian inference. This method is central to this
thesis and is discussed in detail in the following sections.

Laplace Approximation

Laplace Approximation estimates the posterior distribution with a multivariate normal distri-
bution. The approach is motivated by taking the second-order Taylor series expansion of the
log posterior over the weights around the maximum a-posteriori (MAP) estimate, where the

quadratic term appears in the same form as in the log-likelihood in a Gaussian Model [47].
1
log p(6|D) ~ logp(6*|D) + 5(9 — 0" H(6 - 6%)

The Laplace approximation has the nice property that the mode is centred at the same mode
as the true posterior. However, by the nature of the Gaussian distribution, the Laplace
approximation fails to capture multi-modal posteriors. Another bottleneck of the Laplace

approximation is computing the second-order Hessian matrix, which is often very expensive
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to compute for modern-day neural networks. Literature has explored approximating the
Hessian using off-diagonal elements [60] or low-rank approximations. In Grosse and Martens
[21], the Kronecker factorization of the approximate block-diagonal Hessian is applied to
obtain scalable Laplace Approximation for neural networks.

Sampling Approaches

Sampling methods approximate probability distributions non-parametrically via sampling.
Popular algorithms include rejection sampling, importance sampling, and Markov Chain
Monte Carlo sampling (MCMC) [6]. Methods such as rejection sampling and importance
sampling suffer in high dimensions and are usually not used in practice. Notably, Hamiltonian
MCMC is proposed for neural networks by Neal et al. [55]. Welling and Teh [74] proposed
to combine stochastic gradients with Langevin dynamics, demonstrating that variational
inference can be performed by adding noises to the stochastic gradient descent process.
There are further extensions to this method using second-order information such as the
Hessian [46, 64], and utilizing the wake-sleep algorithm [8].

Other Approaches

There are a few other notable approaches and directions in the Bayesian deep learning
community. Several works use deterministic models and their logit outputs to quantify the
uncertainty. Dirichlet prior networks output the parameters of a Dirichlet distribution, which
acts to update the distribution of categorical distributions to output the predictions [48]. Evi-
dential Neural Networks [63] interprets the logits as multinomial beliefs to output predictions
for the classes as well as an additional class that captures the uncertainty. Test-time aug-
mentation techniques have been frequently adopted in medical applications [72, 51], where
image augmentation is applied at test time for stochastic forward to obtain an approximate
predictive distribution.

2.2.3 BDL for Computer Vision

In the following we discuss two BDL methods that have been predominantly used in the

computer vision setting, namely dropout-based methods and ensemble-based methods.
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MC Dropout

Dropout was first proposed by Srivastava et al. [65] as a way to regularize neural networks.
The idea of dropout is to drop a random fraction of units and their connections during training,
effectively "thinner" models are being trained. At test time, the full network is recovered
by activating all the units. The motivation for dropout is to prevent co-adaptation of the
units and prevent the network from overfitting. When dropout layers are turned off during
inference (known as weight averaging), one can also interpret the result as the average result
from an ensemble of smaller networks. Since the introduction of the dropout layer, it has
been widely used in almost all deep learning frameworks as a regularization technique. We
discuss the Dropout layers in more detail in Section 3.2.

Gal and Ghahramani [16] showed that in addition to its regularization properties, dropout
training can actually be interpreted as a Bayesian Approximation of a Gaussian process
(GP). Furthermore, training with the dropout objective minimises the Kullback-Leibler
divergence between an approximate distribution ¢(®) and the posterior p(®|X,y) of a GP
model integrate with respect to the finite rank covariance function parameters . Recall that

a predictive probability of a deep GP model is given as:
P XY) = [ p(yIx.0)p(@lX.y)do

p(yx,0) = N(y;§(x, 0,7 'Ip)

The authors showed that the posterior distribution p(®|X,y) can be approximated with a
variational distribution ¢(®) defined as:
: K;
W; =M, - diag ([z,-,j]j:1>

zij~Bernoulli(p;) Vi=1,..L,j=1,..,Ki

Furthermore, the authors showed that minimising the common cross-entropy loss objec-
tive has the effect of minimising the KL divergence between the variational distribution and

the posterior:
KL(g(o)||p(0[X,y))

This theoretical result suggests that T stochastic forward passes at test time with dropout
turned on can be used to approximate the posterior prediction, whilst the variance of the
passes can be interpreted as a measure of uncertainty. Kendall et al. [38] combines this

technique with the SegNet architecture to produce uncertainty estimates from the network,
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Figure 2.4 The Bayesian Segnet uses the Segnet architecture with dropout included in the deepest
encoders and decoders, T stochastic forward passes are performed at test time with dropout layers
turned on, and the mean of the predictions are taken as the prediction, the variance as the uncertainty

shown in Figure 2.4. In addition, the authors reported higher network performance in

accuracy when the networks were trained with dropout layers.

Ensembles

Recall that summing over stochastic forward passes has the intuitive interpretation as an
ensemble of smaller networks. This leads to the natural extension of using deep ensemble
methods [26] to perform Bayesian approximation. Ensemble methods seek to find a predictive

distribution using a combination of individual predictors, such as averaging their predictions:

1
T !
l

M~

p(ylx) = pei(y’x7 ei)

I
—_

where we have T realizations of the network each with parameter 6,. Recently, Lakshmi-
narayanan et al. [41] showed that standard loss functions are proper scoring functions that
reward better-calibrated predictions over worse ones. Additionally, deep ensemble mod-
els with even just 7 = 5 can be a robust framework to improve uncertainty quality for all
cases such as identifying out-of-distribution samples, and calibrated uncertainty scores. The
authors were able to demonstrate results on image datasets such as MNIST and ImageNet.
Gustafsson et al. [24] further indicated that ensemble methods improve uncertainty quality
over MC-Dropout methods.

A clear downside of ensembles, however, is that it’s difficult to scale on mobile devices.
As such, several recent research studies have attempted to perform more efficient variations
of deep ensembles. Pruning approaches use diversity measures to reduce the complexity of
ensemble models by removing some of them [23]. Distillation approaches use student-teacher
frameworks to teach a single network to represent the knowledge of an ensemble [10]. Lastly,
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techniques such as sub-ensembles [70] and batch-ensembles [75] are proposed to reduce the

computation of ensembling by sharing subsets of components among predictors.

Dropout Variants

Mobiny et al. [50] showed that similar to Dropout, Drop-connect can also approximate the
variational distribution of the posterior. Rather than de-activating nodes in a network, the
weights of the parameters are dropped stochastically. The authors reported the method to
produce more robust uncertainty estimations. Gal et al. [17] proposed a dropout variant
by replacing the discrete Bernoulli distribution with a concrete distribution relaxation. In
this setting, the dropout probability is tunable using gradient methods, and the authors
demonstrated improved uncertainty estimates. Some further studies have also indicated that
concrete dropout improves over MC-Dropout in several metrics [38, 52].

On the other hand, more recently there has been a re-evaluation of dropout-based Bayesian
inferences, where several studies observed dependence of uncertainty quality on network
architectures [71] and general high variability of the uncertainty outputs [15]. This thesis
further investigates the properties of Bayesian inference with MC dropout, and how architec-
tural decisions such as skip connections, efficient convolutional blocks, and network scales

can affect the quality of uncertainty approximations.






Methods

The methodology of this thesis follows a two-fold process, tackling first the efficiency aspect
of neural networks, then the reliability aspect of the networks. First, we utilize efficient
building blocks from state-of-the-art networks to build a scalable and efficient encoder-
decoder architecture. This is discussed in detail in Section 3.1, where we perform preliminary
experiments to test different upsampling methods and choose the best decoder design as our
baseline network. Secondly, we incorporate the network into practical Bayesian frameworks
such as MC Dropout in Section 3.2, and we introduce a novel Bayesian approximation
method using stochastic depth. Lastly, in Section 3.3 we state the metrics that we will
be using to both evaluate the predictive performance of the network and the quality of its

uncertainty outputs.

3.1 Efficient Network Design

Many segmentation architectures have been explored in the literature recently, such as
the encoder-decoder architecture [59, 1], atrous convolution-based methods [12], and more
recently, bilateral segmentation networks [78] and transformer-based networks [73]. Dropout-
based Bayesian inference in segmentation architectures has been introduced [38] and pre-
dominantly validated in encoder-decoder frameworks [79]. Therefore, the first part of this
thesis specifically focuses on efficient designs of the encoder-decoder architecture. Our
methodology involves designing an efficient decoding path, modifying the network with the
location of skip connections, the type of skip connections (concatenation vs. addition), and
the scale of the network (width and depth). We examine the effect on both the performance of
the network measured in accuracy and IoU, as well as the effect on the number of parameters

and runtime.
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3.1.1 Network Architecture
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Figure 3.1 Baseline architecture of the efficient segmentation network design. MobileNetV2 is used
as a backbone encoder for high efficiency, and a symmetrical decoder is built using linear bottleneck
layers and depthwise separable deconvolution blocks. Skip connections are included every time the
network upsamples or downsamples, to maintain information flow at every spatial dimension.

The basic design process of our network architecture is as follows: we first compare and
examine state-of-the-art CNNs to select good candidates for the encoder architecture, then
we utilise efficient building blocks introduced in [31, 61, 32] to build the decoder. Similar
to [59], we adopt skip connections at locations where the spatial dimension changes via
downsampling or upsampling to transfer the features from the encoders to decoders. This
should help the network to learn both faster and produce more fine-grained features, and we
further investigate the effect of skip connections in experiments described in Section 4.2.1.

Figure 3.1 shows an illustration of the baseline network used in this thesis. The network
uses an efficient convolutional neural network as the backbone encoder, the specific choice

and reasoning are discussed in Section 3.1.2. The encoder consists of several stages, where all
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stages perform a series of convolution blocks and some stage decreases the spatial dimension
(stride s > 1). Each stage consists of 1 or more convolution blocks, and each block includes
a batch-normalization block and a non-linear activation function such as ReLU. The details
of the block design are discussed in Section 3.1.3.

This encoder-decoder design has a few important properties that are worth mentioning.
First, the direct transfer of features from the encoder to the decoder is an easy way to
recover spatial information lost from the encoder. The intermediate tensors are also relatively
light-weight compared to intermediate features obtained using atrous convolutions, where
high spatial resolution is maintained throughout the network [11]. The second property
is that concatenating the features via skip connections similar to [33], rather than adding
them like in residual blocks, results in the widening of the features but also increased
parameter count. Finally, the intermediate features need to be stored and held in memory
during the forward pass, and can only be released when the corresponding decoder block
is reached. Therefore there’s a trade-off between retaining high spatial dimension features
vs. computational resources, where more fine-grained features can be retained at the cost
of increased inference time and memory costs. We examine this trade-off in more detail in

Section 4.2.1 by modifying skip connections.

3.1.2 Backbone Encoder

Table 3.1 SOTA CNNs’ top 1 performance on ImageNet1 K

Encoder Accuracy Params (M) GFLOPs
ResNet18 [27] 69.8 11.7 1.81
MobileNetV1 [31] 70.6 12.7 0.59
MobileNetV2 [61] 71.9 35 0.3
DenseNet121 [33] 74 .4 8.0 2.83
EfficientNetV1(B0) [68] 77.7 5.3 0.39
EfficientNetV1(B1) [68] 78.6 7.8 0.69
EfficientNetV1(B2) [68] 80.6 9.1 1.09
EfficientNetV2(S) [69] 84.2 21.5 8.37

Table 3.1 shows the top-1 accuracy of the state-of-the-art CNNs on ImageNet, ordered
by the performance. An immediate observation from the table is that not all parameters
are equal, and that the network architecture can drastically influence the parameter-to-
performance ratio. For instance, whilst both ResNet18 and EfficientNetV 1(B2) have around
10M parameters, the latter has a much higher performance. We highlight that MobileNetV2
is one of the lighter networks with still relatively good performance-to-parameter ratio. We
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chose MobileNetV?2 as the backbone encoder because it has the fewest number of parameters.
In theory, our encoder can be replaced by any of the other CNNs and adopted in the encoder-

decoder frameworks.

3.1.3 Decoder Design

In the encoder-decoder architecture, the purpose of the decoder is to recover the spatial
dimension and to process additional contextual information from the feature. In the following,
we discuss and experiment with different decoder design choices to upsample features, which
are used in the decoder blocks (blue and orange) in Figure 3.1. We experiment with three
variations: 1) using standard deconvolution layers, 2) using depth-wise separable (dw)
deconvolution layers, and 3) using inverted residuals with dw-deconvolutional layers. We
perform preliminary tests by building the networks and show that inverted residual decoders

are the optimal choice that uses very little memory whilst maintaining high performance.

Standard Deconvolution

Deconv

[h, w, c] [h', w', c]
Figure 3.2 Standard deconvolution takes in feature of dimension 2 X w x ¢ and outputs &’ x w' X ¢/

The standard deconvolution layer performs the opposite operation to a standard convolu-
tion layer, with exactly the same number of parameters, but reversing the input and output
channels. The layer takes in an input feature with dimensions z X w X ¢, and outputs a feature
with dimension &’ x w’ x ¢’. Typically we consider an upsampling ratio of 2, and usually
¢’ < cin the upsampling stages. Similar to regular convolutions, the computational cost of
this operation is:

hxwxcxc xkxk

and requires k x k X ¢ x ¢’ memory. The visualization of the feature input and output are

illustrated in Figure 3.2.



3.1 Efficient Network Design 29

Depthwise Deconvolution

— —
Depth-wise 1x1 Conv
Deconv
(h, w, c] [h, W', c] [h, w', ¢]

Figure 3.3 Depth-wise deconvolution takes in feature of dimension 4 X w X ¢, and first performs a
filtering step to increase the spatial dimension to 4’ X w’ without changing the number of channels,
then performs a point-wise convolution to combine the representations into new representations with
¢’ channels. Compared to standard deconvolution layers, the depthwise deconvolution uses fewer
parameters.

Similar to depthwise separable convolutions, we consider depthwise separable deconvo-
lution that works with a similar principle. The idea is to disentangle the single deconvolution
step into two steps. Starting with an input tensor of size h X w X ¢, we first perform a
filtering step that uses a depthwise deconvolution layer to expand the spatial dimension of the
feature tensor without increasing the depth. Then, we apply a pointwise 1 X 1 convolution to
recombine the features into a smaller dimension ¢’, outputting a final feature with dimensions

h' x w' x ¢’. The computation cost of this operation is:
hxwxcx (kxk+c)

Comparing this to the regular deconvolution operation, we achieve a reduction factor of
1

<+ k—lz, which is typically 8 to 9 fold reduction in both parameters and computational costs.

Inverted Residual Decoder

Finally, we consider the inverted bottleneck design where features are first expanded before
they are reduced back to the desired dimension. This operation is illustrated in Figure 3.4,
showing the inverted bottleneck operation on a 4 X w X ¢ tensor with expansion factor z. The
input feature is first expanded channel-wise to fc¢ channels, and the feature selection step is
performed on the expanded feature using depthwise deconvolution as described previously,

leading to an output of 4’ x w' x tc. Finally, the tensor is "squeezed" back into the desired
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1x1 Conv Depth-wise 1x1 Conv
Deconv
[h, w, c] [h, w, tc] [h, W', tc] [, w', ¢

Figure 3.4 The inverted bottleneck design first expands the feature input with more channels, often
with an expansion factor of t =4 or t = 6. A depth-wise filtering step is performed on the expanded
channels to increase the spatial dimensions, and point-wise convolution is applied to output the desired
number of channels ¢’.

channel depth ¢, outputting 4’ x w’ x ¢’. The total cost of the operation is
hxwxextx(c+k+c)

Whilst this is more expensive than depthwise separable deconvolutions, it is empirically
shown that this operation is much more expressive than the depthwise convolution. As a
result, the module design requires less width. We show in the following preliminary results
that with the same number of parameters, the inverted bottleneck design achieves much
higher performance than the depthwise decoders.

1x1 Conv Depth-wise 1x1 Conv
Deconv

— — —>|—@—>
Add

[h, w, c] [h, w, tc] [h, w, tc] [h, w, c] [h, w, c]

Figure 3.5 The inverted residual block design can be applied to any convolution blocks where the
spatial dimension of the input and output feature is the same (i.e. stride=1), this design adds an
additional residual path from the input to the output.
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An additional implementation detail for the inverted bottleneck layers is inverted residuals.
This is illustrated in figure 3.5, where the input is connected to the output feature via a residual
connection. This is motivated by Sandler et al. [61] where the authors empirically show
that such designs can produce expressive and lightweight networks. Note that the inverted
residual block can be used whenever the dimension of the input and the output are equal,

such as the blue blocks shown in Figure 3.1.

Preliminary Results

Table 3.2 Preliminary results of different decoder designs. Params(d): number of parameters for
decoders in millions, Params(t): total number of parameters of the network in millions, Time: inference
time measured in ms on GPU, Memory: memory usage measured in MB on GPU

Methods ‘ mlOU Params (d) | Params (t)] GFLOPs|] Time(ms)| Memory
Regular 63.91 1.52 3.34 2.26 8.03 103
Depthwise 64.60 0.19 2.00 1.38 7.88 124
Inv-Res-0.75 65.69 1.04 2.06 1.56 10.54 167
Inv-Res(baseline) | 66.61 1.86 3.67 2.24 11.47 178

We perform a preliminary experiment on the three decoder designs described above on
the CamVid Dataset. We evaluate the performance of the network using mIOU, and we
quantify the efficiency of the network using the number of parameters, FLOPS, runtime, and
memory requirement. Training details follow the same recipe that is described in detail in
Section 4.1.

Table 3.2 shows the results of the preliminary experiment. First, we see that the depthwise
decoder does in fact reduce the number of parameters in the decoder by about 8-fold, and
achieves the fastest inference speed out of all three experiments. Furthermore, it does not hurt
performance compared to regular decoders. Our results show that the inverted residual design
achieves the highest mIOU of 66.61, but uses most parameters out of all three experiments.

For fair comparison to the depthwise decoder, we reduce the number of total parameters
of inv-Res via width and depth scaling by a factor of 0.75 (Inv-Res-0.75) on both the encoder
and the decoder to obtain around 2M parameters. The scaled-down version of the network has
an encoder that is strictly worse than the regular encoder, so one would expect performance
to decrease. However, we show that even with the same number of parameters, the inverted
residual design still outperforms the depthwise decoder. This suggests that the inverted
residual decoder is able to recover a significant portion of the information lost in the decoder,

and the performance-to-parameter trade-off is better. We therefore use Inv-Res as the baseline
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for all our future experiments. In the following chapter, we will further attempt to reduce the

run time and memory requirements with experiments in Section 4.2.1.

3.2 Bayesian Inference

The central idea of Bayesian neural networks (BNN) is to sample stochastic predictions that
approximate the predictive distribution obtained via the posterior. In this thesis, we focus on
two main methods of achieving BNN: MC Dropout, and stochastic depth. MC Dropout is
already a predominantly used method in literature [16] and serves as a good benchmark on our
network. We introduce a novel method of Bayesian inference with stochastic regularization
using stochastic depth. We will provide some intuition on why this method is suitable for
the Bayesian framework, and demonstrate empirical evidence to show its effectiveness. The
following section describes the two regularization methods in detail and outlines how network

prediction and uncertainty quantification are performed at test time.

3.2.1 MC Dropout

(a) (b)

Figure 3.6 Example illustration of how dropout layers work with two layers of units. a) shows a fully
connected layer with all units activated, b) shows the same layers with only 50% of the units activated.

In Section 2.2.3 we have already discussed the Bayesian interpretation of MC Dropout
formalized by Gal and Ghahramani [16]. Here we state the dropout mechanism in full detail
and include the implementation methods. Consider a regular neural network layer with ReLU

activation function, we can write the forward pass as follows:

Ye+1 = ReLU(F(ye, {Wri1,bri1})) = ReLU(Wy i1y, +byy) 3.1

Where y, € R%,y,.; € R%1 are the outputs of layer ¢ and £ + 1 respectively, and the

parameters Wy, 1,by | are the associated weights and biases of layer ¢+ 1. Dropout layers
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modify this feedforward operation with a Bernoulli variable z, € R% as follows:

l .
zﬁ. ) Bernoulli(p)

Yo+1 =ReLU(Wyy (2o xye) +besr)

Where Z&g) represents the jth element in z,, and () represents per-element multiplication.
Effectively, dropout layers zeros, or masks p proportions of the previous layers activation.
An intuitive illustration of the dropout layer is shown in Figure 3.6

3.2.2 Stochastic Depth

Whilst residual blocks alleviate the vanishing gradient problem to a certain extent, extremely
deep CNNs can still be difficult to train. Stochastic depth is a regularization technique
introduced by Huang et al. [34] to help with the training process of deep networks. The idea
of stochastic depth is to use shorter networks during training by stochastically skipping a
proportion of layers, and the full network is retrieved at test time. An example illustration of
stochastic depth applied to the baseline network is shown in Figure 3.7. This is performed
with a simple Bernoulli random variable b, for each layer, with "survival" probability
pe=P(by=1).

ye = ReLU(b,F(x,{W;}) +x) (3.2)

The authors showed that a simple linear decay rule py =1 — Iﬁi(l — pL) can be used effectively
to set the survival probability of each layer, with survival probability decreasing in deeper
layers, where py is the survival probability of the last layer. We apply a similar probability
assignment with the deepest part of the network having the lowest survival probability.
Stochastic depth empirically increases the gradient flow during training, and yields much
better results with deep models.

An interesting property is of using stochastic depth at test time can be interpreted as an
ensemble of shallower networks with the same base building blocks but different depths.
This presents a natural interpretation similar to the MC dropout, where 7" stochastic forward
passes can be performed to produce a Bayesian approximation. The number of possible
network configurations grows exponentially with the number of blocks, and we can sample
networks with different depths with each stochastic pass. Therefore, we can interpret
Bayesian inference with stochastic depth as a Bayesian method that captures uncertainty in

the structure of the network, specifically its depth.
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(a) Baseline network (b) Baseline network with stochastic depth

Figure 3.7 Example illustration of how stochastic depth could be applied to the baseline network. a)
shows the network with all blocks activated, and b) shows an instance of a shallower network with
stochastic depth, where blocks with dashed lines indicate blocks that are turned off (i.e. bypassed
with identity functions).

3.2.3 Uncertainty Quantification

Consider that we perform T stochastic forward passes with any regularization techniques,
such as MC Dropout or stochastic depth as described above. We can approximate the
expected softmax outputs as

1 T
py=cl D)~} ply=clx,w) (3.3)
t=1
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where w; represents an instance of a realized weight tensor, or a sample of the weight, and
p(y = c|x,w;) is the softmax probability for class ¢ which the network predicts with weights
Wr.

The uncertainty of the network is commonly computed using mutual information or
predictive entropy [19]. We can measure the predictive entropy or the information given in

the expected softmax probabilities as

H(y|x,D) = Z( Zp —c|xwt>log( Zp _c\xw,> (3.4)

where D is the training set. The mutual information measures the mutual dependence between
the information given in the expected softmax output and the expected information in the
softmax output

I(y,wlx, D) = H(ylx, D) —]EWNP(W\D [H(ylx,D)] (3-5)

H(y|x,D) + = ZZp = clx,w;)log p(y = c|x, wy) (3.6)

c t=1
Mutual information can be interpreted as a measure of model uncertainty, or epistemic
uncertainty since mutual information is minimized when the knowledge about the model
parameter does not increase the information in the final prediction. On the other hand,

predictive entropy can be interpreted as the sum of epistemic and aleatoric uncertainty.

3.3 Metrics

In the following, we outline methods of evaluating the performance of the network and the
quality of uncertainty estimates. Namely, we use global accuracy, average accuracy, and
mean intersect-over-union (mIOU) as metrics for network performance. For uncertainty
qualities, we use expected calibration errors (ECE), maximum calibration errors (MCE), and

the area under the curve for precision-recall curves.
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3.3.1 Network Performance

We evaluate the network’s performance mainly by mIOU, but we also monitor global and

average accuracy. We define these metrics below.

Accuracy (global)

Given predicted pixel y; and corresponding ground truth label y;, we define global accuracy
as

1 N
Accuracy(g) = N Z]I[f/i =y (3.7)

where N defines the total number of pixels. This is usually denoted as Acc(g) in our tables.

Accuracy (average)

A downside of using global accuracy is that it doesn’t take the frequency of each class into
account, which means that the metric is biased towards classes with larger areas. We further
define per-class or average accuracy, which is not influenced by the frequency of each class:

1 N

E;mzﬂ[ﬁi:yi] (3.8)

1

Accuracy(c) =

where C is the total number of classes. This is usually denoted as Acc(c) in our tables.

Intersect-over-union (I0U)

Let C be the total number of classes, we further define per-class true positives NCT P false
positives NP, and false negatives N7V as:

NP =Y 1[5 = yilyi = ]

i,c

NP =Y I[9; # yilpi = ]
i,c
NIV =Y T[: # yilyi = ]
i,c
We define per-class IOU as the ratio between the intersect (y A §) and the union (y V §), which
in practice would be computed as:

10U N 3.9
¢ NIP L NFP 4 NFN (39)
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and mean IOU as:

10U = Ne 3.10
" _E;NCTP+N£P+N5N (5.10)

The mIOU metric is a suitable and commonly used metric in semantic segmentation, it
measures the degree of "similarity" between the ground truth and prediction and puts the

same weight on each class even if classes are imbalanced in the dataset.

Other metrics

We also sometimes monitor the speed and cost of the networks wherever we need to compare
efficiency between networks. In particular, we measure the number of parameters of the
network and the number of FLOPs to perform one inference. Furthermore, we track the GPU
inference time and memory time averaged over 5 forward passes. These metrics help us

better evaluate the efficiency of the network.

3.3.2 Uncertainty Calibration

Before we introduce the metrics for measuring the quality of uncertainty, we first need
to discuss what it means for a network to produce “good” uncertainties. Recall that our
learning problem has no ground truth uncertainty, rather, we require ‘“calibrated uncertainties”.
Consider a classification network with softmax outputs, where ¥ is the network prediction
and P is the associated confidence with that prediction. We define perfect calibration as the

confidence is equal to the true probability that y = ¥ given P. In other words,
PY=YP=p)=p (3.11)

In practice, we discretize the space of probability into M bins each with width 1 /M. Let By,
be the set of indices of samples with confidence score p € (mT’l, A%} We define the accuracy

of bin B, as:
1 .
acc(By) = — Y 1[5 = yi] (3.12)
|Bn|

i€By

Where I is the indicator function. We can further define the confidence of each bin as the

average confidence of samples within B,

conf(By) = — Y pi (3.13)
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Calibration Error

Two natural metrics arise from the definition of calibration. The first is Expected Calibration
Error (ECE) [54]:
E[P(Y=Y|P=P)|]

It’s clear that an ECE value of 0 indicates perfect calibration. Another metric commonly
used is the Maximum Calibration Error (MCE) [54], defined as the maximum difference

between the confidence and the true accuracy:
max |P (Y =Y|P=P) —p|

In practice, we can compute the ECE and MCE using discrete bins described in Equation 3.12

and Equation 3.13.

M
By
ECE = ’;1 % lacc(By,) — conf(B,)| (3.14)
MCE = max |acc(By,) — conf(B,,)| (3.15)
m

PAVPU

In the context of computer vision tasks such as segmentation, global statistics such as ECE
and MCE are not able to capture the local quality of the segmentation. Mukhoti and Gal [52]
introduced a way of evaluating uncertainty quality for computer vision and has been adopted
by several other studies [50, 49]. The central idea of the metric is based on the statement that
a well-calibrated model should be accurate (a) when it’s confident (c¢), and unconfident (u)
when it’s inaccurate (i).

Let the normalized confidence value I € [0, 1] be the threshold of confident/unconfident.
We define n, as the number of pixels that are predicted correctly and confidently, n;. be
the number of pixels that are predicted inaccurately but confidently, n,, be the number of
pixels that are predicted accurately but not confidently, and #n;, be the number of pixels that
are predicted inaccurately and unconfidently. Mukhoti and Gal [52] further proposes that
accuracy and certainty be performed over patches of pixels by using sliding windows. We
define the accurate-certain ratio as:

. nac
accurate|certain) = ——— (3.16)
p( | ) ——
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Similarly, we define the inaccurate-uncertain ratio as:
Ry

njy + Nic

p(uncertain|inaccurate) = (3.17)

Lastly, we define the uncertainty accuracy (UA), to the patch accuracy vs. patch uncertainty

(PAVPU) as:
PAVPU — Mac 1 Miy (3.18)
Nge + Ny + Nay + Nic

Clearly, networks with larger values of the above metrics are better. These metrics can be
evaluated with a particular uncertainty threshold 7 [52], but can also be evaluated by sliding
the uncertainty threshold from [0, 1] and computing the area under the curve [50, 49]. In this
thesis, we compute the area under the curve as it’s a more robust way that doesn’t require

manual tuning of the uncertainty threshold. The normalized uncertainty value is computed

: I
using Inorm = 77—

~——, with the minimum and maximum values computed over a validation
max min
set. !

'In Section 4.3.4 we will discuss the validity of normalizing uncertainty this way, and why it may present
issues in stochastic cases.






Experiments

4.1 Training Details

4.1.1 Dataset

The Cambridge-driving labelled Video Database (CamVid) is a roadscene dataset captured
from the perspective of a driving automobile [9]. All images are semantically labelled with 11
classes such as cars, pedestrians, bicyclists, and poles. Images are captured at a resolution of
960 x 720, with 367, 101, and 233 images in training, validation, and testing sets respectively.
Following [1], we downsize the images to 480 x 360 and drop ambiguous pixels labelled as

"void" for training and evaluation.

[l Bicyclist
B Building
H Car
B Fence
[l Pedestrian
H Pole
B Road
I Sidewalk
Il SignSymbol
W sky

Tree
W Void

Figure 4.1 Example labelled image from the CamVid Dataset (test set)
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4.1.2 Image Augementation

We follow a similar image augmentation procedure as [29, 44], with random horizontal
flipping, followed by random color jittering, and random cropping from scale [0.7,1.3].
Finally, the images are resized to 360 x 480 and normalized. Figure 4.2 demonstrates two
examples of images going through the augmentation pipeline. The purpose of these image
augmentation steps is to help reduce the overfitting of the network on the training set. We
also note that all "void" pixels are ignored in both loss functions and metrics, therefore we
use the same pixel value for filling in the blank space when images are scaled down (e.g.

second row in the figure).

Original Image Random Flip Random Jitter Random Crop Label

Figure 4.2 Example of two images going through the augmentation process step by step, the images
are randomly flipped, jittered, and cropped. Note that the label and the image go through the same
augmentation but with random parameters each time. Image augmentation is computed in parallel to
the main training loop

4.1.3 Hyperparameters

All networks are trained and tested on Google Colab with an Nvidia T4 GPU with 15GB of
RAM, and the networks are built and trained using PyTorch !. Unless explicitly stated, all
experiments in this thesis utilize the same hyperparameters in the training process. This is so
that we can make fair comparisons across different runs. We utilize a batch size of 10 images,
which was empirically determined to have relatively stable gradients but not using too much
memory during training. We train all experiments for 200 epochs, or equivalent to around

7400 steps. Similar to [11], we use RMSProp with an initial learning rate of le — 3 with a

, ower
iter p
max_iter

polynomial learning rate scheduler that updates the learning rate using (1 —
with power 0.9. We use a weight decay of 1e —4 to help with regularization, and unless
stated otherwise, we use dropout layers after each stage, with dropout probability linearly

ILink to GitHub Repo containing all training and evaluation code


https://github.com/LeonY117/msc_project
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decaying from 0.1 to O from the deepest to the shallowest layers on both encoders and
decoders. Finally, we use cross-entropy loss with no class balancing.

It’s important to note that all networks trained with 200 epochs on a polynomial learning
rate schedule are underfitted. An example of training history is shown in Figure 4.3, where
it’s clear that the network can still improve further. We make this choice simply due to
limited time and computational resources, and we argue that the performance of the network
at the same cut-off epoch is indicative of how well it will perform with more epochs. This
also implies that the performance of the network at the end of training is typically lower
than what it should be if more epochs are trained. We supply further experiments that use
exponential learning rate and patience 100 in Section 4.2.2. Additionally, due to different
network sizes, larger networks will be more underfitted than smaller networks.

Finally, we also point out that many papers utilize three additional “tricks” to improve
results: a) pre-training on cityscape and/or ImageNet, b) fine-tuning with full-resolution
images, and c) multi-scale evaluation. In this thesis, we do not perform any of these
techniques to further improve results, all of our experiments are trained and tested on half-

resolution images only from the CamVid dataset.

Training Set Validation Set
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Figure 4.3 The performance history of the baseline network on the training and validation set. There
tends to be a larger gap between the training and validation set on classes with high variabilities in
appearances, such as cyclists, sign symbols, and fences. Note that performance on both training and
validation sets has not plateaued for most classes at the end of 200 epochs.
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4.2 Efficient Designs

In this section, we focus on efficient designs of the network, building upon the inverted
residual decoder block that we tested in Section 3.1.3. Our experiments are based on
several hypotheses and observations from the literature. We test a few modifications to
the network architecture in Section 4.2.1 such as variations to skip connections, adding
squeeze and excitation blocks, and removing decoder depths. We then test different scales
of the network by changing the depths and widths in Section 4.2.2. The results from these
tests then aid us in finding the most efficient way to scale the network, which we explore
in Section 4.2.3 by presenting three different scales of the baseline network that achieves

competitive performance against the state-of-the-art.

4.2.1 Modifications

The modifications we make to the baseline network presented in Section 3.1.3 are as follows.

No skip connections This is a simple ablation test to see how effective skip connections are.
As it is commonly known, skip connections help transfer high-resolution features and usually
help with thinner classes. By removing them, we expect the network to under-perform in
classes with fine boundaries or small areas, such as fences and posts. In the tables below we
refer to this experiment as no-skip, and an illustration of the experiment setup is shown in

Figure 4.4a.
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Dense connections With similar motivation as no skip connections, we want to see how
much can extra skip connections help with performance, and how much slower inference
becomes with the presence of more skip connections. Note that this experiment only differs
a little bit from the baseline experiment, with additional skip connections on the first and

fifth stages. We refer to this experiment as dense-skip, and it’s illustrated in Figure 4.4b.

Residual connections In this variation, we add the features from the encoder to the
decoder rather than concatenating it. This is motivated by the residual block [27], where
skip connections in the form of addition can help with training networks across large depths.
Since our network is symmetrical, it means that the output feature of each encoder block
shares the exact same shape as a corresponding output feature of a decoder block, making
feature addition possible. We refer to this experiment as add-skip, and it’s illustrated in
Figure 4.4c.

Squeeze and Excitation We adopt the squeeze and excitation block [32] in similar fashion
to the MBConv block used in EfficientNet [68]. The squeeze and excitation block is inserted
after the inverted residual expansion block. The idea of squeeze and excitation block is
that features can be used more effectively through attention mechanisms, and that we don’t

require a significantly higher parameter count to improve performance.

Shallow decoder In this variation, we use depth = 1 in the decoder of the network. The
idea of this variation is motivated by high performing segmentation architectures that use
relatively light-weight decoders [11, 44], and the intuition is that the encoder architecture
that reduces feature resolution whilst increases feature depth is an effective enough structure
on its own. In other words, this experiment hypothesizes that decoder are closer to an
implementation detail that helps to transform the encoder features into desired shapes. We
abbreviate this experiment as shallow-dec in tables.

Table 4.1 Qualitative performance of network modifications

Method ‘ Params | GFLOPs | Time(ms)| Acc(g)tT Acc(c)?T mlIOU 1
baseline 3.6TM 2.24 11.47 92.09 75.22 66.61
shallow-decoder | 2.59M 1.68 8.99 92.01 74.65 66.47
no-skip 3.63M 2.21 11.38 90.28 66.96 58.51
add-skip 3.63M 2.21 11.44 91.97 74.18 65.95
dense-skip 3.7TM 2.27 11.48 92.03 75.97 67.17
squeeze-excite 4.56M 2.27 13.97 92.39 75.46 67.70
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Figure 4.4 Modifications to skip connections between the encoder and corresponding decoder blocks.
(a) shows the baseline network with all skip connections turned off, (b) with all skip connections
turned on, and (c¢) uses addition rather than concatenation to transfer features

Table 4.1 shows the quantitative performance of the modifications, and table 4.2 shows
the per-class breakdown of the IOU scores for each experiment. As expected, we see that
no-skip produces the worst mIOU due to significantly lower IOU on small classes such as
fence, post, bicyclist, for example, it only achieves 0.8 IOU on poles. On the other hand, we
see that dense-skip increases the IOU scores for small classes significantly, resulting in the
highest mIOU score out of all experiments, and highest scores on the five smallest classes:
bicyclist, fence, pedestrian, pole, and sign symbols. Perhaps surprisingly, the increased
number of skip connections (one at low depth and one at high depth, illustrated in fig 4.4)
doesn’t come at much a high cost in computation, with only 0.04M more parameters and
0.01ms longer inference time compared to the baseline. On the other hand, when using
residual connections in add-skip, we see that the performance drops significantly without a
noticeable change in parameter count or inference time.

From our experiments that modified the skip connections, namely no-skip, dense-skip,
and add-skip, we show that the high-resolution features maps transferred from the encoder
improve the detection of smaller classes significantly. Since transferring features via addition
worsens the performance, we can conjecture that normal skip connections improve network
performance by creating a wider feature map at low depth via concatenation. Note that
widening the feature map via skip connection is a much cheaper operation than naively

scaling the output feature width throughout the network, which would quadratically increase
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the number of parameters. We also show that additional connections do not significantly
hinder computation in our network architecture, as the increase in inference time is marginal.

We further observe that using decoder blocks with depth 1 in shallow-dec is an extremely
efficient way of scaling down the network, whilst squeeze-excite is a relatively inefficient
way of scaling up the network. We see that shallow-dec reduces parameter count by around
30% and inference time by around 25%, but only at the cost of 0.14 mIOU. A plausible
reason for this is that the inverted residual decoder block has some redundancies within it,
such that it doesn’t scale very well with depth. Another reason by be due to the fact that the
network relies a lot on the features transferred from the encoders via skip connections, such
that additional feature extraction within the decoder is not as significant. Finally, we see that
although squeeze-excite improves mIOU, it also requires too many parameters and inference
time.

Table 4.2 per-class metric breakdowns for experiments with modifications to skip connections

°
2 o0 .§ = @
% -§ [} ‘E § u>f C) o )
5 2 5 2 8 &2 T & § =z 8 3 3§ o
Method 2 /2 S £ & £ &£ ©v v # & < < E
baseline 53.7 84.8 776 56.8 41.8 284 955 81.7 40.8 932 783 92.1 752 66.6

shallow 55.2 844 784 554 417 268 956 819 409 93.1 777 920 74.7 66.5
no-skip 47.6 827 750 506 272 1.8 941 772 219 90.7 749 903 67.0 58.5
add-skip |54.2 84.6 78.0 559 413 248 955 814 387 932 779 92.0 742 66.0
dense-skip | 56.2 849 77.6 57.0 45.8 28.1 953 80.9 419 932 77.8 92.0 76.0 67.2
s-e 57.8 855 791 583 444 279 956 819 424 933 78.6 924 755 67.7

We present qualitative results of the modifications to skip connections in Figure 4.5
on the CamVid test set. In particular, we highlight that no-skip produces a very smooth
and coarse-grained segmentation map, reminiscent of the coarse outputs from DeepLab
before CRF post-processing [11], or the upsampled outputs from low resolution features
in FCN [44]. We also see that the presence of skip connections significantly improve the
prediction smaller classes, notably posts in columns 1,4, 5.
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upsample-skip

dense-skip

Figure 4.5 Qualitative results of modifications to skip connections. We highlight that no-skip produces
very coarse results with smooth boundaries, as it’s unable to recover the spatial resolution without the
skip connections. On the opposite spectrum, dense-skip is able to better predict small and thin classes
such as posts and signs.
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4.2.2 Network Scaling

Motivated by model scaling techniques in [28, 31, 61, 27], we attempt to scale the network
by changing the depth and width of the network with the same input resolution. Depth
refers to the number of blocks in each stage, and width refers to the number of output
channels in each stage. We do not change the input resolution for purposes of benchmarking
on CamVid, where it’s standard to use either full or half image resolution. Furthermore,
we make modifications only from the baseline model, i.e. we do not adopt any of the

modifications from the previous section for this set of experiment.

Table 4.3 Quantitative performance of network scaling

Width Depth ‘ Params | GFLOPs | Time(ms)| Acc(g)?T Acc(c)T mlOU T

0.5 0.5 0.67"M 0.49 4.13 90.28 67.82 59.14
0.5 1.0 0.97M 0.73 6.98 90.70 69.51 60.89
1.0 0.5 2.53M 1.54 4.60 91.87 74.01 65.58
1.0 1.0 3.6TM 2.24 11.47 92.09 75.22 66.61
1.0 L.5 6.98M 3.74 17.58 92.25 75.39 67.14
1.5 1.0 8.13M 4.90 14.80 92.60 78.29 69.59

Table 4.3 shows the results of varying the width scale in [0.5, 1.0, 1.5] and the depth scale
in [0.5,1.0,1.5]. We see that the parameter and FLOP count both scale roughly with the
width and depth scale. However, we note that increasing width tends to increase parameter
and floop count more than depth. This is due to the fact that depth count are rounded to the
nearest integer in our implementation (e.g. the depth cannot be less than 1 for each stage, and
depth value 1.4 will be rounded down to 1). We observe that our finding coincides with that
or [68], where uniform scaling across more than one dimension leads to better performance.
For instance, width and depth scale of 1 outperforms cases where only one dimension is
scaled.

However, it’s also important for us to critically evaluate the trade-off of increasing
parameters and inference speed. Indeed, we see that increases in network width improves
mlIOU more, even when taking into consideration of the parameter count. By comparing
the experiments with width 1.5, depth 1.0 and width 1.0, depth 1.5, we see that the wider
network adds only an additional 1.2M parameters but has lower inference time and higher
mlIOU by 2.4. We can also intuitively conjecture that inference time should scale roughly
linearly to depth and less than linearly for width due to parallel computing by GPUs.

Wider networks may be more preferable in segmentation architectures in general, since it
requires more fine-grained features compared to classification networks. This is an important

distinction as previous research has often placed emphasis on scaling the depth of classifica-
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tion networks in the context of classification tasks [27, 28]. This phenomenon, coupled with
the fact that inference time scales better with width than depth, means scaling network width
is preferred over scaling network depth when upscaling networks. On the other hand, when
downscaling networks, we can scale both width and depth proportionally, since reducing

depth decreases parameter significantly without hurting performance too much.

4.2.3 Comparison to State-of-the-arts

Table 4.4 Quantitative performance of Lite, Medium, and Large Networks, (+) indicates experiments
that have been trained for more epochs

Name \ Params GFLOPs Time(ms) Acc(g) Acc(c) mlOU
Lite 0.56 0.44 3.88 90.83 69.38 61.13
Lite(+) 0.56 0.44 3.35 91.97 7459 66.40
Medium 2.70 1.70 6.72 91.86 75.39 66.66
Medium(+) | 2.70 1.70 6.72 93.16 79.78 71.63
Large 10.52 6.11 10.27 93.00 78.99 70.84
Large(+) 10.52 6.11 10.27 9349 81.53 73.61

Utilizing the results and findings from the previous two sections, we present three
versions of the baseline network, lite, medium, and large. All networks use a shallow decoder
with depth 1 and dense skip connections. The smallest network, which we call lite, uses
a width and depth scale 0.5, the medium network uses a width and depth scale 1.0, and
the large network (large) uses a width and depth scale of 2.0 and 1.0 respectively. For
fair comparison to state-of-the-art, we also train the network with the same recipe as one
adopted by FCDenseNet [37] to see how the network performs with more epochs, we use an
exponential learning rate scheduler with decay 0.995, and a batch size of 3. We monitor the
mlIOU and average accuracy on the validation set with a patience of 100.

Table 4.4 shows the result of these three networks trained for 200 epochs, and (+) indicates
networks that are trained for more than 200 epochs following the same recipe as [37]. The
results validate our discussion in Section 4.1, where networks trained with 200 epochs do
underfit the data. The lite network uses only half a million parameters and an inference speed
of 3.88 ms, equivalent to around 250 fps. On the other hand, the large network only uses
around 10M parameters and still runs comfortably in real-time with an inference speed of
10.3 ms which is around 100 fps.

In Table 4.5 we list state-of-the-art methods that use the same input as us, with halved
resolution. We see that the smallest version of our network, Lite, achieves higher mIOU than

all other methodologies that are trained and tested with half-resolution. Aside from ENet, our
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Table 4.5 Comparison to state-of-the-arts that are trained and tested on half resolution

Method ‘ Resolution  Pretrain Encoder Params (M) mIOU
FCNBS [44] 1/2 ImageNet VGG 134.5 57.0
DeconvNet [56] 1/2 ImageNet VGG 252 48.9
SegNet [1] 172 - - 29.5 46.4
ENet [58] 172 - - 0.37 51.3
Lite [ours] 172 - MobileNetV2 0.56 66.4
Medium [ours] 172 - MobileNetV?2 2.70 71.6
Large [ours] 1/2 - MobileNetV2 10.52 73.9

Table 4.6 Comparison to state-of-the-arts that are trained and tested on using full resolution. 1/2 + F:
trained on half resolution followed by fine-tuning on full resolution

Method \ Resolution  Pretrain Encoder Params (M) mIOU
FCDenseNet56 [37] 1/2+F - DenseNet 1.5 58.9
FCDenseNet67 [37] 1/2+F - DenseNet 3.5 65.8
FCDenseNet103 [37] 1/2+F - DenseNet 94 66.9
BiSeNet [78] F ImageNet Xception 5.8 65.6
BiSeNet [78] F ImageNet ResNetl8 49.0 68.7
DDRNet23-Slim [29] F ImageNet - 5.7 74.7
DDRNet23 [29] F ImageNet - 20.1 76.3
RTFormer-Slim [73] F ImageNet ViT 4.8 81.5
RTFormer [73] F ImageNet ViT 16.8 82.5
Lite [ours] 1/2 - MobileNetV?2 0.56 66.4
Medium [ours] 172 - MobileNetV2 2.70 71.6
Large [ours] 172 - MobileNetV2 10.52 73.9

Lite network also uses only a fraction of the parameters used by other approaches. Note that
our network uses 0.2M more parameters compared to ENet, it is justified by the significantly
higher mIOU score.

In Table 4.6 we list methods that are trained and evaluated on full resolutions, most of
them are pre-trained on ImageNet, and some also use multi-scale evaluation [73]. The com-
parison is also plotted on Figure 4.6 for visualization. We see that our network outperforms
FCDenseNet and BiSeNet, where our Medium network outperforms both methods on mIOU
with fewer parameters. On the other hand, our method still underperforms DDRNet and
RTFormer. It remains future work for us to train our network with full-resolution images,
with pre-training on ImageNet in order to compare with these methods fairly. Furthermore,

we are unable to make fair comparison of runtime due to different hardware.
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Figure 4.6 Comparison of our approach to state-of-the-art approaches, methods connected with a
dashed line belong to the same paper.

4.2.4 Discussions

In the following summarise the findings from our experiments in Section 4.2.1 and 4.2.2.

SKip connections are a low-cost way to improve the detection of small classes. Our
experiments with modifications to skip connections showed that concatenating features from
the encoder to the decoder significantly helps the detection of small obstacles. In addition, we
highlight that this operation is relatively low-cost, adding only a small fraction of parameter
and inference time. Note that this may not hold in other encoder-decoder networks that do
not use inverted residual blocks. The expansion steps in inverted residual blocks are the
dominant computational cost of our network and hence transferring high-resolution features

comes at a relatively low cost.

Scaling coefficients can be improved with a small grid search. Our network scaling
experiments in Section 4.2.2 use width and multipliers in [0.5,1.0, 1.5] for convenience of
quickly exploring the parameter space. A much better but perhaps more costly method would
be to adopt a small grid search similar to [68], whereby we find the best scaling coefficient
for the network depth and width based on a few constraints. For example, we can perform a
random grid search of width and depth multipliers to determine the most efficient way to
improve performance. The scaling coefficients obtained this way are more likely going to

better optimize the scaling efficiency of the network.
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Wider features are desired in segmentation networks. This finding is validated by our
experiments involving shallow decoders and network scaling. We conjecture that network
width is extremely crucial in encoder-decoder networks, allowing networks to improve their
detection for small classes. We provide conjecture on why this is the case, although more
rigorous experiments are required to validate this hypothesis:

The nature of network width for encoder-decoder architectures is different to classification
networks. Consider a standard classification network such as MobileNet, it outputs last
features with shape (7 x 7 x 1024) to predict 1000 classes on ImageNet. This suggests
that the information contained in the last feature map sits at a much lower (about 50-fold)
dimensional manifold than the feature dimension itself. Now consider building an encoder-
decoder architecture with MobileNet, the final feature map of the network from the decoder
will have 32 channels with half the original resolution. Compared with the final prediction
at full resolution (4 x more pixels) with 11 channels, we actually have less information
contained in the feature map than is required from the final prediction.

Therefore, the loss in spatial information from lossy downsampling and upsampling
steps can be reduced by increasing the network width, which increases the sparsity at which
information exists in the final feature output. Modern CNNs are typically designed and
fine-tuned to the ImageNet dataset with 1000 classes, so its intermediate feature outputs
are not designed for semantic segmentation. This points to a future direction of neural
architecture search (NAS) for finding scalable and efficient encoder-decoder architectures,

which we will further discuss in the conclusion.

4.3 Bayesian inference

This section explores three variants of Bayesian neural networks, MC dropout, stochastic
depth, and combining both. Using the standard dropout-based approximation as a comparison,
we show that stochastic descent is an interesting and novel way of performing Bayesian
inference that exhibits several desired properties, such as improved network calibration and
performance. We evaluate the results by first examining the effect of the Bayesian methods
on the network performance, followed by the effect on the uncertainty calibration.

All of our experiments use the baseline network from our previous experiments, with
additional Dropout layers and stochastic depth layers. Dropout layers are added after the
activation function, and stochastic depth is applied to blocks with residual connections (i.e.
input and output are the same shape, such that the block can be bypassed using identity
function). We use dropout probabilities that decrease linearly from the deepest to the most

shallow parts of both the encoder and the decoder. This follows the intuition from [38], where
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deeper layers are responsible for generating more abstract features that would influence the
variance of the network further. We use a similar strategy with linearly decaying stochastic
depth probabilities, which follow directly from [34] where it was shown that linearly decaying
rates are preferred over constant rates. Finally, we also test a variant where we combine both
dropout and stochastic depth.

The networks are trained with the stochastic regularization method turned on, and at test
time we consider two different types of inference: deterministic and Bayesian (denoted as
[b]). In the deterministic case, we simply turn off the dropout layers or the stochastic depth
layers and allow the full network to be used for inference 2. On the other hand when applying
Bayesian inference, we keep the regularization layers on, and utilize Equation 3.3 to compute
the output probabilities for inference (See Section 3.2 for details). Unless specified, we use
T = 10 in the testing phase of the network with 10 forward passes to perform Bayesian
approximation.

We test dropout probabilities and stochastic depth probabilities both in the range of
[0.1,0.3,0.5], where the value indicates the dropout probability or the bypass probability of
the deepest block. We will denote the dropout probability as the probability that a given unit
will be dropped, and the stochastic depth probability as the probability that a block will be
bypassed. By increasing the probability in both sets of experiments, the networks become
more underfitted as both dropout and stochastic depth are regularization methods. We also
point out that for our network, stochastic depth is a slightly weaker regularizer than dropout
layers, since all layers can have valid dropout layers but not all layers can be bypassed (i.e.
upsample and downsample layers cannot be passed since they change the feature shape). We
denote the experiments as dropout, sd, and combined, and indicate the probability assigned

to the experiment, e.g. dropout-0.3. We train the network with the same protocol as before.

4.3.1 Network Performance

Table 4.7 shows the accuracy and IOU performance of our tested Bayesian networks, where
[b] indicates scores obtained using Bayesian approximation, and without [b] indicates that
the network is tested deterministically. Perhaps not so surprisingly, networks with higher
regularization achieve lower performances. In particular, we highlight that combining both
dropout and stochastic depth with high probabilities makes the network significantly underfit
the dataset, scoring around 6.7 mIOU lower compared to the deterministic baseline model.
We show that networks trained with stochastic depth obtained the best performance, with 0.1

probability achieving the highest global accuracy of 92.2 and 0.3 probability achieving the

%In practice, the layer outputs need to be scaled by a constant at test time in order to recover the full network
properly
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Table 4.7 Accuracy and IOU with Bayesian Approximation, [b] indicates values ran with Bayesian
approximation with 7' = 10, without [b] indicates deterministic inference

Dropout Sd \ Acc(g) Acc(g) [b] Acc(c) Acc(c)[b] mIOU mlIOU [b]

- - | 92.08 - 75.42 - 66.90 -
0.1 - | 92.09 92.14 75.22 74.81 66.61 66.59
0.3 - | 91.90 91.87 73.68 71.74 65.21 64.34
0.5 - | 91.39 91.40 70.55 69.63 62.31 62.07

- 0.1 92.20 92.22 75.15 74.92 67.01 66.97
- 0.3 | 92.05 92.08 7591 75.48 67.06 66.97
- 0.5 ] 91.80 91.83 74.82 74.37 66.09 66.00

0.1 0.1 | 92.08 92.10 75.05 74.40 66.70 66.50
0.3 0.3 | 91.78 91.73 71.97 70.91 63.92 63.30
0.5 05| 91.28 91.28 68.38 67.13 60.62 60.14

highest per-class accuracy of 75.91 and mIOU of 67.06. This is likely due to the fact that
networks trained with stochastic depth are easier to optimize [34].

An interesting phenomenon that is consistent throughout most experiments is that global
accuracy ran with Bayesian approximation outperforms the version of the network where
stochastic regularization is turned off. We further illustrate this in Figure 4.7, where the
dashed lines indicate the performance of the network without dropout, and the line shows
the performance with varying T. We show that using Bayesian inference with 7 > 0 has
the desired property of improving global accuracy, but the undesired property of worsening
average accuracy and mIOU, which are usually the more important metrics. This finding is
in agreement with [38], which showed the improvement in global accuracy with Bayesian
approximation, but did not mention the decreased performance on other metrics.

Figure 4.8 shows qualitative examples of predictive entropy and mutual information of
our Bayesian variants on a test set image. Qualitatively, we see that most methods are able to
produce high uncertainties in regions where predictions are false. Stochastic depth-based
methods tend to produce fewer variations in their outputs, which are qualitatively shown with
dimmer uncertainty maps. In general, we find that qualitatively the uncertainty outputs look
similar, but methods with higher regularization tend to produce higher overall uncertainties

than methods with lower regularization.
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Figure 4.7 Performance of networks of Bayesian variants, dashed lines indicate performance of
deterministic test-time inference, error bars show the variance of the values from 5 repeated trials.
Note that global accuracy can usually be improved with Bayesian inference, but average accuracy and
mlOU tend to be deteriorate.
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Figure 4.8 Qualitative results of Bayesian variants on a test set image, note that variants with higher
probabilities (i.e. with probability 0.5) produce qualitatively more uncertainties.
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4.3.2 Network Calibration

Table 4.8 MCE, ECE, and PAVPU with Bayesian Approximation, [b] indicates values ran with
Bayesian approximation with 7 = 10, without [b] indicates deterministic inference

Dropout Sd | mIOU1 ECE| ECE[b] MCE| MCE [b] PAVPU %

- - 66.90 2.71 - 1.61 - -
0.1 - 66.61 2.46 1.60 1.40 0.84 90.14
0.3 - 65.21 2.19 0.70 1.25 0.16 88.35
0.5 - 62.31 2.20 0.17 1.09 0.05 88.63

- 0.1 | 67.01 2.36 1.87 1.26 0.92 90.33
- 0.3 | 67.06 2.14 1.23 1.11 0.58 89.79
- 0.5 | 66.09 2.20 1.17 1.16 0.55 89.61

0.1 0.1 | 66.70 2.30 1.07 1.31 0.48 89.83
0.3 0.3 | 63.92 1.92 0.27 1.00 0.12 88.53
0.5 0.5 | 60.62 1.72 1.10 0.76 0.41 87.66

In Table 4.8 we report the three metrics for uncertainty quality: ECE, MCE, and area
under PAVPU (See Section 3.3 for details). Note that we compute PAvPU with mutual
information, which takes into account the model uncertainty. When compared to the network
trained deterministically, we see that all Bayesian variants reduce calibration error even when
tested deterministically. When Bayesian inference is used, dropout and sd reduce calibration
error further. This shows that test-time Bayesian approximation, which approximates the
predictive distribution by taking into account the posterior, is able to produce much more
calibrated uncertainties.

The lowest calibration error obtained with Bayesian inference with achieved using
dropout-0.5, with 0.17 ECE and 0.05 MCE. On the other hand, the lowest calibration error
obtained using deterministic inference is achieved with combined-0.5. However, our results
show deteriorated calibration errors in the combined experiments where both dropout and
stochastic depth are added to the network with high probabilities. The best calibration errors
achieved without hurting performance are obtained by sd-0.3, with 2.14 ECE and 1.11 MCE.

In Figure 4.9 we show the ECE and MCE of dropout, stochastic depth, and combined
with probability 0.5, i.e. the highest rate for all three experiments. We see that increasing T
does, in fact, decrease calibration error for both dropout and stochastic depth, but deteriorates
calibration error for combined. We conjecture that this is likely due to the fact that the network
underfits the data significantly, and that the network is underconfident in its predictions.

For the area under PAVPU, we see that the highest value is achieved with stochastic depth
with 0.1 probability, and the value decreases with more regularization. On the other hand,
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by comparing results from Table 4.8 and Table 4.7, we observe that PAVPU tends to be
somewhat directly proportional to the global accuracy of the network and therefore may not
be an unbiased score that measures the quality of the uncertainties. For our experiments, the
PAVPU metric is unable to distinguish between the quality of uncertainty across different

runs. We will present a further critical discussion of this issue at the end of this section.

Expected Calibration Error (ECE) Maximum Calibration Error (MCE)
1.2 4
—— Dropout —— Dropout
| —}— Stochastic Descent —— Stochastic Descent
2.0 —}— Combined 1.04 —}— Combined

Figure 4.9 Effect of T on calibration errors for the different Bayesian methods with probability 0.5,
error bars show variance obtained over 5 repeated trials over the test set.

In general, we see that using a moderate amount of stochastic regularization has the
desired effect of making the network more calibrated even without using Bayesian inference.
Using stochastic forward passes with as little as T values of 2 to 5, as shown in Figure 4.9,
can decrease calibration error significantly further. In Figure 4.10, we show the difference in
calibration error between the deterministic network trained with no dropout, and the network
trained and tested with dropout 0.5 and 7 = 10. We see that the latter achieves almost perfect
calibration whilst the former is overconfident. Furthermore, on the right side of the figure
we plot the proportion of each probability bucket and show that the dropout variant predicts
much fewer samples with high confidence. Complete calibration plots for all experiments
can be found in the appendix.
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Figure 4.10 The reliability and frequency plot of stochastic vs. deterministic networks, networks with
dropout show much more calibrated uncertainties whilst deterministic networks are overconfident.

4.3.3 Out-of-distribution Data

In this section we briefly experiment with testing the Bayesian networks on a dataset that
comes from a different distribution as the training set, to qualitatively test its reliability on
out-of-distribution data. We use a few samples of the RUGD dataset [76], which is a outdoor
scene-understanding dataset for mobile robots. The majority of the images in the dataset are
driving footage on forest trails, and represents a very different distribution of images to the
CamVid dataset.

Figure 4.11 shows example images outputted by our Bayesian network. On terrains that
are out-of-distribution such as images in first, second, and third row, we observe qualitatively
extremely high uncertainties scores, particularly high epistemic uncertainties. We also see
that the uncertainty is much lower on the last image on the fourth row, where the scene is
much more similar to the CamVid dataset.

In Figure 4.12 we also plot the distribution of softmax probabilities outputted by the
deterministic and Bayesian network respectively. We see that when comparing the softmax
probabilities of the networks on the CamVid test set and the RUGD dataset, the average
confidence score of on the CamVid set is much higher. In particular, we highlight that the
Bayesian network reduces confidence score much more on the RUGD dataset compared to

the deterministic version.
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Figure 4.11 The predictive outputs of a Bayesian network with dropout, we observe qualitatively very
high epistemic uncertainty values on images that are different to our training set, e.g. the first three
row, and much lower uncertainty on the last image, which is similar to the CamVid dataset.
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Figure 4.12 The distribution of softmax probabilities of the deterministic and Bayesian network on
the CamVid dataset and the RUGD dataset. The Bayesian network produces much lower confidence
on the out-of-distribution dataset compared to the deterministic network.
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4.3.4 Discussions

Table 4.9 Computational requirements for different Bayesian inference, using the dropout and sd
variant that obtained highest mIOU performance. Stochastic depth obtains overall lower ECE and
higher mIOU compared to dropout.

Inference ‘ Time(ms) | FPS{ Memory] mIOU{t ECE| MCE |

dropout-0.1
Det. 11.4+0.0 88 189 Mb 66.61 2.46 1.40
T=2 21.940.0 46 358 Mb 65.94 1.97 1.11
T=4 36.1+4.9 28 711 Mb 66.36 1.72 0.94
T=8 61.5+11.6 16 1.39 Gb 66.50 1.66 0.87
T=16 107.4£1.9 9 2.77 Gb 66.58 1.55 0.80
T=32 215.5+£5.4 5 5.54 Gb 66.65 1.52 0.80
sd-0.3
Det. 11.4+0.0 88 190 Mb 67.06 2.14 1.11
T=2 19.842.3 51 361 Mb 66.45 1.68 0.89
T=4 33.7+4.1 30 712 Mb 66.90 1.37 0.69
T=8 52.4+0.7 19 1.39 Gb 66.94 1.30 0.65
T=16 108.7+0.2 9 2.77 Gb 67.01 1.25 0.60
T=32 220.4+0.5 5 5.54 Gb 67.03 1.22 0.58

Trade-off between network performance and calibration error An obvious artifact of
testing with Bayesian inference is that they produce lower mIOU and per-class accuracy. This
presents a trade-off between improving the calibration error and achieving high performance.
Our experiment show that using dropout probabilities as low as 0.1 combined with T
as low as 2 to 5, is enough to reduce the calibration error by a large margin. Whilst
using several stochastic forward passes for Bayesian approximation achieves significantly
improved calibration errors, it also reduces the performance measured in mIOU compare to
deterministic test-time inference. Furthermore, this gap is usually non-reducible even at very
high 7', as shown in Figure 4.7. In other words, Bayesian inference using test-time stochastic
regularization trades off performance for improved calibration.
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Trade-off between computation cost and calibration error Our results in Table 4.8 show
that the best calibration error is obtained when Bayesian inference is used with 7" stochastic
forward passes. However, a clear downside of this approach is that the computational costs
grows with 7. Table 4.9 show the computational trade-off between 7', mIOU, and calibration
errors. The first observation we make is that inference time does not grow linearly with 7', but
memory requirement roughly grows linearly with 7. This is intuitive since GPU can compute
inference in parallel to save compute time, but still has to produce the entire intermediate
tensors. We see that with our GPU environment (Section 4.1), we lose real-time inference at

around 7" = 4, where the framerate drops below 30.

Dropout versus stochastic depth Our results show that stochastic depth is a valid way
of obtaining more calibrated uncertainties. We further show that Bayesian variants with
stochastic depth with appropriate probabilities have the desired property of achieving higher
mlIOU whilst reducing ECE. We demonstrate the trade-off with dropout-0.1 and sd-0.3 in
Table 4.9, which are the best network in terms of mIOU for the dropout and sd variants. We
see that networks trained with stochastic depth obtain higher accuracy and lower calibration
errors compared to dropout methods. This is true for both deterministic and non-deterministic
test inferences. Therefore in practical cases, stochastic depth is a good alternative over
dropout methods to achieve lower calibration errors without losing performance. On the
other hand, if one is only interested in achieving the best calibration error, dropout methods

with high probability (e.g. 0.5) with test-time Bayesian inference is the best choice.

PAvVPU is a biased metric for measuring uncertainty Our results in Table 4.7 and
Table 4.8 show that PAVPU is proportional to the global accuracy of the data. We see similar
observations with papers that use this metric or its variations [52, 50, 49], where networks
that perform better tend to achieve higher area under the curve. This phenomenon is due
to the fact that the curve is not normalized to its performance, in the limit with maximum
uncertainty threshold 1, the formula 3.18 equates to exactly the global accuracy.

We argue that PAvPU is not a good metric for measuring the quality of uncertainties
due to the following reasons. 1) The quality of uncertainty should be mutually exclusive
with respect to the quality of performance, in other words, the network should be allowed to
predict poorly, and "knows" that it’s performing poorly. 2) The PAvPU value is computed
with based on a sliding window of uncertainty threshold that’s derived from normalized
entropy values across a validation set, which makes the metric dependent on the dataset
(i.e. if it’s in-domain, the entropy values will be lower, and vice versa if the validation is

out-of-distribution from the training set, the entropy values will be higher), as well as noisy
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artifacts from the stochastic nature of Bayesian approximation. We argue that a good metric
should not be dependent on the dataset itself and that such quality are defects that make the

metric unsuitable for evaluating uncertainty.



Conclusion

This thesis tackled two important challenges in robotics computer vision tasks with deep
learning: improving the efficiency of networks and improving the reliability of networks. We
re-visited the standard encoder-decoder structure by building both the encoder and decoder
using efficient convolutional blocks. The architecture was further improved using dense skip
connections, shallow decoding stages, and efficient network scaling. We presented a final set
of networks that achieves competitive performance with state-of-the-art approaches, with our
lite version scoring 66.4 mIOU with only 0.56M parameters, and our large version scoring
73.9 mIOU wth 10.52M parameters. We show that Bayesian neural networks trained and
tested with stochastic regularization exhibit much more improved calibration error than their
deterministic counterparts, and further proposed a novel Bayesian approximation method
based on regularization using stochastic depths. Our empirical results show that this novel
approach obtains improved properties from the standard dropout-based method, obtaining
improved calibration without reductions in preformance. Finally, we critically evaluated the
commonly used uncertainty accuracy or PAvPU metric, and argued that it’s not a suitable

metric for evaluating the quality of uncertainties.
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5.1 Evaluation of methodology

The following involves a critical evaluation of the methodology used in this thesis. We reflect
on aspect of the methodology that could be improved in retrospect, and critically discuss the
results we obtained.

Due to a high number of possible hyperparameters and design choices, we largely iterated
through version of the networks by changing one modification at time from the baseline.
This allowed us to understand both quantitatively and qualitatively what difference each
modification makes, and combine multiple changes to develop a more efficient model.
However, this method of iterating through the parameter space is somewhat ad-hoc and could
have been improved by adopted techniques such as grid search and random search through
the hyperparameter space, or using neural architectural search with a reinforcement learning
agent to iterate over network variations. On the other hand, such approaches would be more
computationally expensive, but we would more likely find a better sets of hyperparameters.

All of our networks were trained for 200 epochs by default, whilst this helped us to
benchmark between different variations, it also meant that most networks were underfitted
and their performance at the cut-off point may not be indicative of their final performance.
For instance, smaller networks will be less underfitted than larger networks with the same
number of steps. An alternative approach would have been to train all networks until the
validation loss stops improving. This approach may have impact on our result for calibration
errors in particular, since all of our Bayesian methods degrees of regularizing powers.

Although it’s common to use half-resolution on the CamVid dataset, more recently most
studies have trained and tested the networks with the full resolution images. Full resolution
images are more likely to be used in practice as it contains richer information. However, a
major consequence that this would have on our network is that the receptive field would much
smaller relative to the input image size. Potential ways to alleviate this include adopting
atrous convolutions, global pooling modules, or additional context extractors in the networks
design. Using larger input image would also quadruple the number of FLOPs and likely
inference time. Our networks would still be able to run in real-time, but at lower fps.

Finally with regard to metrics, we’ve chosen ECE, MCE, and area under the PAvPU curve.
We chose these because MCE and ECE are global statistics that measure the calibration of
the network, and area under the PAVPU curve is a statistics that encaptures local information.
We have argued, however, that PAvPU or uncertainty accuracy is a defected metric that
depends on the dataset itself and the performance of the network, and doesn’t independently

measure the quality of uncertainties. This meant that we lacked a suitable metric that takes
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the semantic nature of the task into account, such as how good “regional” or “structural”

uncertainties are, which would be more useful for downstream tasks such as object avoidance.

5.2 Future Work

Neural architecture search (NAS) for semantic segmentation architectures Some state-
of-the-art mobile neural networks have been developed from NAS, and we recommend
a similar search for semantic segmentation structures, specifically for encoder-decoder
networks. We conjectured that lightweight standard convolutional neural networks may be
ill-suited for semantic segmentation tasks due to low feature width at high resolutions, which
creates lossy processing of spatial information. Thus, using a more principled approach
such as NAS may yield interesting encoder-decoder architectures that are more suited for

preserving spatial information in semantic segmentation tasks.

Reducing the trade-off between performance and calibration error We presented
Bayesian neural networks that have well-calibrated uncertainties but lower performance
compared to their deterministic counterparts. We therefore concluded that there may be
a trade-off between performance and calibration error. However, it raises the question of
whether networks are more calibrated because they are underfitted, and whether or not the
network can fit the data well and being calibrated. Our results using stochastic depth shows
that it is indeed possible to retain high performance whilst reducing calibration error, but it’s
unclear whether the same result can be extended to dropout-based methods. This remains an
open-ended question that we leave for future research.

Effect of network architecture on Bayesian approximation Our experiments showed
that using Bayesian inference that combine the results of smaller stochastic networks actually
worsens performance of networks in average accuracy and mIOU. It still remains an open
question on whether this is a property of MC Dropout method itself, whereby the posterior
is a worse local minimum, or whether it only affects networks with certain architectures.
We concur our findings with recent papers that have suggested that the uncertainty quality
depends on network architectures and there are generally high variability of uncertainty
qualities [71, 15]. A really interesting direction for future research is to find network
architectures and hyperparameters such that consistently good posteriors can be obtained

without compromising performance.
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Theoretical properties of stochastic depth We’ve introduced the novel way of performing
Bayesian approximation with stochastic depth by presenting empirical evidence that it obtains
good posterior estimation with calibrated uncertainties. However, there still lacks a theoretical
understanding of how the technique fits into the Bayesian approximation framework, and is

an important direction for future research.

Efficient parallel processing of Bayesian approximations Although parallel computing
makes Bayesian approximation at test time tractable at low 7', it still increases computational
costs by a non-negligible amount. Potential future direction include adding stochasticity
only on the last few stages of the network, such that at test time the bulk information can be

processed deterministically first before passing into stochastic parts of the network.
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Network performance

We show the prediction outputs of the best performing Large Network, see Section 4.2.2 for

details. The outputs are not handpicked but randomly selected from the test set.

Input Image abe Prediction Input Image

Figure A.1 Prediction and ground truth of the /arge network on the CamVid Test set. Note that black
pixels in the ground truth represent "void" pixels.
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Input Image Label Prediction Input Image Label Prediction

Figure A.2 Prediction and ground truth of the /arge network on the CamVid Test set. Note that black
pixels in the ground truth represent "void" pixels.



Uncertainty outputs

In the following show a few more qualitative uncertainty predictions of our Bayesian varia-

tions.

Dropout

Input Label

Mutual Information

Prediction Wrong Predictions Predictive Entropy

Figure B.1 Uncertainty breakdown for dropout variants
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Figure B.2 Uncertainty breakdown for dropout variants



Stochastic depth
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Figure B.3 Uncertainty breakdown for stochastic depth variants
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Figure B.4 Uncertainty breakdown for stochastic depth variants
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Figure B.5 Uncertainty breakdown for combined variants
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Uncertainty outputs
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Figure B.6 Uncertainty breakdown for combined variants
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Reliability Graphs

Reliability graph for different dropout rates
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Figure C.1 Reliability graph for different dropout probability, using 7 = 10.
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Reliability graph for different stochastic depth rates
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Figure C.2 Reliability graph for stochastic depth variants, using 7 = 10.

Reliability graph for different combined rates
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Figure C.3 Reliability graph for combined variants, using 7 = 10. Note that the network become
underconfident at high probabilities
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